统计方法有助于理解和分析数据的行为。现在我们将学习一些统计函数,可以将这些函数应用到Pandas的对象上。

pct_change()函数

系列,DatFrames和Panel都有pct_change()函数。此函数将每个元素与其前一个元素进行比较,并计算变化百分比。

import pandas as pd
import numpy as np
s = pd.Series([1,2,3,4,5,4])
print (s.pct_change()) df = pd.DataFrame(np.random.randn(5, 2))
print (df.pct_change())
Python

执行上面示例代码,得到以下结果 -

0        NaN
1 1.000000
2 0.500000
3 0.333333
4 0.250000
5 -0.200000
dtype: float64 0 1
0 NaN NaN
1 -15.151902 0.174730
2 -0.746374 -1.449088
3 -3.582229 -3.165836
4 15.601150 -1.860434
Shell

默认情况下,pct_change()对列进行操作; 如果想应用到行上,那么可使用axis = 1参数。

协方差

协方差适用于系列数据。Series对象有一个方法cov用来计算序列对象之间的协方差。NA将被自动排除。

Cov系列示例

import pandas as pd
import numpy as np
s1 = pd.Series(np.random.randn(10))
s2 = pd.Series(np.random.randn(10))
print (s1.cov(s2))
Python

执行上面示例代码,得到以下结果 -

0.0667296739178
Python

当应用于DataFrame时,协方差方法计算所有列之间的协方差(cov)值。

import pandas as pd
import numpy as np
frame = pd.DataFrame(np.random.randn(10, 5), columns=['a', 'b', 'c', 'd', 'e'])
print (frame['a'].cov(frame['b']))
print (frame.cov())
Python

执行上面示例代码,得到以下结果 -

-0.406796939839
a b c d e
a 0.784886 -0.406797 0.181312 0.513549 -0.597385
b -0.406797 0.987106 -0.662898 -0.492781 0.388693
c 0.181312 -0.662898 1.450012 0.484724 -0.476961
d 0.513549 -0.492781 0.484724 1.571194 -0.365274
e -0.597385 0.388693 -0.476961 -0.365274 0.785044
Shell

注 - 观察第一个语句中ab列之间的cov结果值,与由DataFrame上的cov返回的值相同。

相关性

相关性显示了任何两个数值(系列)之间的线性关系。有多种方法来计算pearson(默认),spearmankendall之间的相关性。

import pandas as pd
import numpy as np
frame = pd.DataFrame(np.random.randn(10, 5), columns=['a', 'b', 'c', 'd', 'e']) print (frame['a'].corr(frame['b']))
print (frame.corr())
Python

执行上面示例代码,得到以下结果 -

-0.613999376618
a b c d e
a 1.000000 -0.613999 -0.040741 -0.227761 -0.192171
b -0.613999 1.000000 0.012303 0.273584 0.591826
c -0.040741 0.012303 1.000000 -0.391736 -0.470765
d -0.227761 0.273584 -0.391736 1.000000 0.364946
e -0.192171 0.591826 -0.470765 0.364946 1.000000
Shell

如果DataFrame中存在任何非数字列,则会自动排除。

数据排名

数据排名为元素数组中的每个元素生成排名。在关系的情况下,分配平均等级。

import pandas as pd
import numpy as np
s = pd.Series(np.random.np.random.randn(5), index=list('abcde')) s['d'] = s['b'] # so there's a tie print (s.rank())
Python

执行上面示例代码,得到以下结果 -

a    4.0
b 1.5
c 3.0
d 1.5
e 5.0
dtype: float64
Shell

Rank可选地使用一个默认为true的升序参数; 当错误时,数据被反向排序,也就是较大的值被分配较小的排序。

Rank支持不同的tie-breaking方法,用方法参数指定 -

  • average - 并列组平均排序等级
  • min - 组中最低的排序等级
  • max - 组中最高的排序等级
  • first - 按照它们出现在数组中的顺序分配队列

Pandas统计函数的更多相关文章

  1. 第十一节:pandas统计函数

    1.pct_change()计算增长比例 2.cov()协方差 3.corr()相关系数 4.rank()数据排名 5.numpy聚合函数

  2. Pandas学习笔记(三)

    (1)系列对象( Series)基本功能 编号 属性或方法 描述 1 axes 返回行轴标签列表. 2 dtype 返回对象的数据类型(dtype). 3 empty 如果系列为空,则返回True. ...

  3. pandas使用总结

    一.pandas简介 Pandas是基于Numpy开发出的,是一款开放源码的BSD许可的Python库,为Python编程语言提供了高性能,易于使用的数据结构和数据分析工具.Pandas用于广泛的领域 ...

  4. Pandas教程目录

    Pandas数据结构 Pandas系列 Pandas数据帧(DataFrame) Pandas面板(Panel) Pandas基本功能 Pandas描述性统计 Pandas函数应用 Pandas重建索 ...

  5. Python人工智能学习笔记

    Python教程 Python 教程 Python 简介 Python 环境搭建 Python 中文编码 Python 基础语法 Python 变量类型 Python 运算符 Python 条件语句 ...

  6. Pandas分组统计函数:groupby、pivot_table及crosstab

    利用python的pandas库进行数据分组分析十分便捷,其中应用最多的方法包括:groupby.pivot_table及crosstab,以下分别进行介绍. 0.样例数据 df = DataFram ...

  7. Pandas | 14 统计函数

    统计方法有助于理解和分析数据的行为.可以将这些统计函数应用到Pandas的对象上. pct_change()函数 系列,DatFrames和Panel都有pct_change()函数.此函数将每个元素 ...

  8. Pandas数据统计函数

    Pandas数据统计函数 汇总类统计 唯一去重和按值计数 相关系数和协方差 0.读取csv数据 1.汇总类统计 2.唯一去重和按值计数 2.1 唯一性去重 一般不用于数值列,而是枚举.分类列 2.2 ...

  9. pandas的数据统计函数

    # 1汇总类统计 # 2唯一去重和按值计数 # 3 相关系数和协方差 import pandas as pd # 0 读取csv数据 df = pd.read_csv("beijing_ti ...

随机推荐

  1. vs2008 怎么在Release下调试代码

    vs2008 怎么在Release下调试代码 (适用VS2005/VS2008) 在当前工程点击右键选择properties,选择 All Configurations C++>General- ...

  2. 基于Web和二维码的文件传输服务

    在工作中难免需要对外提供一些我们抓取的log或者操作视频之类的资料,但由于工作环境日渐规范和严格,公司的网络环境和客户的网络环境是被独立开来的.这样做的好处不必多说,但同时也给我们工作带来的诸多不便. ...

  3. 创建TPL自定义模板

    文件布局 <!--1d7c7a527b6335cc7a623305ca940e1findex.tpl.html--> <!DOCTYPE html PUBLIC "-//W ...

  4. 17.Recflection_反射

    www.cnblogs.com/rollenholt/archive/2011/09/02/2163758.html

  5. php中get_cfg_var()和ini_get()的用法及区别

    php里get_cfg_var()和ini_get()都是取得配置值的函数,当你需要获取php.ini里的某个选项的配置值时,这两个函数都都可以使用,得到的结果是一样的. 不过,get_cfg_var ...

  6. Django模板继承后出现logo图片无法加载的问题

    父文件:index.html <!DOCTYPE html> <html lang="en"> <head> <title>{% b ...

  7. 流畅的python 符合python风格的对象

    对象表示形式 每门面向对象的语言至少都有一种获取对象的字符串表示形式的标准方式.Python 提供了两种方式. repr() 以便于开发者理解的方式返回对象的字符串表示形式.str() 以便于用户理解 ...

  8. Android Wear - Design Principles for Android Wear(设计原则)

    ---------------------------------------------------------------------------------------------------- ...

  9. Linux运维工程师:30道面试题整理

    1.linux 如何挂在 windows 下的共享目录 mount.cifs //192.168.1.3/server /mnt/server -o user=administrator,pass=1 ...

  10. 010-JDK可视化监控工具-VisualVM

    一.概述 VisualVM是一个集成多个JDK命令行工具的可视化工具.VisualVM基于NetBeans平台开发,它具备了插件扩展功能的特性,通过插件的扩展,可用于显示虚拟机进程及进程的配置和环境信 ...