Lucky7

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)

Problem Description
When
?? was born, seven crows flew in and stopped beside him. In its
childhood, ?? had been unfortunately fall into the sea. While it was
dying, seven dolphins arched its body and sent it back to the shore. It
is said that ?? used to surrounded by 7 candles when he faced a
extremely difficult problem, and always solve it in seven minutes.
??
once wrote an autobiography, which mentioned something about himself.
In his book, it said seven is his favorite number and he thinks that a
number can be divisible by seven can bring him good luck. On the other
hand, ?? abhors some other prime numbers and thinks a number x divided
by pi which is one of these prime numbers with a given remainder ai will
bring him bad luck. In this case, many of his lucky numbers are
sullied because they can be divisible by 7 and also has a remainder of
ai when it is divided by the prime number pi.
Now give you a pair of x
and y, and N pairs of ai and pi, please find out how many numbers
between x and y can bring ?? good luck.
 
Input
On the first line there is an integer T(T≤20) representing the number of test cases.
Each test case starts with three integers three intergers n, x, y(0<=n<=15,0<x<y<1018) on a line where n is the number of pirmes.
Following
on n lines each contains two integers pi, ai where pi is the pirme and
?? abhors the numbers have a remainder of ai when they are divided by
pi.
It is guranteed that all the pi are distinct and pi!=7.
It is also guaranteed that p1*p2*…*pn<=1018 and 0<ai<pi<=105for every i∈(1…n).
 
Output
For each test case, first output "Case #x: ",x=1,2,3...., then output the correct answer on a line.
 
Sample Input
2
2 1 100
3 2
5 3
0 1 100
 
Sample Output
Case #1: 7
Case #2: 14

Hint

For Case 1: 7,21,42,49,70,84,91 are the seven numbers.
For Case2: 7,14,21,28,35,42,49,56,63,70,77,84,91,98 are the fourteen numbers.

 
Author
FZU
 
Source

2016 Multi-University Training Contest 4

思路:套一个中国剩余定理两两不互质的模版;

    容斥一发。。。由于犯了一个sb错,wa一天,不想说什么了;

  

1005  Lucky7

因为满足任意一组pi和ai,即可使一个“幸运数”被“污染”,我们可以想到通过容斥来处理这个问题。当我们选定了一系列pi和ai后,题意转化为求 [x,y]中被7整除余0,且被这一系列pi除余ai的数的个数,可以看成若干个同余方程联立成的一次同余方程组。然后我们就可以很自然而然的想到了中国 剩余定理。需要注意的是,在处理中国剩余定理的过程中,可能会发生超出LongLong的情况,需要写个类似于快速幂的快速乘法来处理。

二进制枚举:

#include<iostream>
#include<cstdio>
#include<cmath>
#include<string>
#include<queue>
#include<algorithm>
#include<stack>
#include<cstring>
#include<vector>
#include<list>
#include<set>
#include<map>
using namespace std;
#define ll __int64
#define esp 0.00000000001
const int N=1e2+,M=1e6+,inf=1e9+,mod=;
ll a[N];
ll b[N];
ll p[N];
ll m[N];
ll mulmod(ll x,ll y,ll m)
{
ll ans=;
while(y)
{
if(y%)
{
ans+=x;
ans%=m;
}
x+=x;
x%=m;
y/=;
}
ans=(ans+m)%m;
return ans;
}
void exgcd(ll a, ll b, ll &x, ll &y)
{
if(b == )
{
x = ;
y = ;
return;
}
exgcd(b, a % b, x, y);
ll tmp = x;
x = y;
y = tmp - (a / b) * y;
}
ll CRT(ll a[],ll m[],ll n)
{
ll M = ;
ll ans = ;
for(ll i=; i<n; i++)
M *= m[i];
for(ll i=; i<n; i++)
{
ll x, y;
ll Mi = M / m[i];
exgcd(Mi, m[i], x, y);
//ans = (ans + Mi * x * a[i]) % M;
ans = (ans +mulmod( mulmod( x , Mi ,M ), a[i] , M ) ) % M;
}
ans=(ans + M )% M;
return ans;
}
int main()
{
ll x,y,z,i,t;
int T,cas=;
scanf("%d",&T);
while(T--)
{
scanf("%I64d%I64d%I64d",&x,&y,&z);
for(i=;i<=x;i++)
scanf("%I64d%I64d",&b[i],&a[i]);
ll ans=;
for(i=;i<(<<x);i++)
{
ll cnt=,mul=;
p[cnt]=;
m[cnt++]=;
for(int ji=,t=i;t>;t>>=,ji++)
if(t&)mul*=b[ji],p[cnt]=a[ji],m[cnt++]=b[ji];
ll pp=CRT(p,m,cnt);
if(cnt&)
ans+=z/mul+(z%mul>=pp)-((y-)/mul+(((y-)%mul)>=pp));
else
ans-=z/mul+(z%mul>=pp)-((y-)/mul+(((y-)%mul)>=pp));
}
printf("Case #%d: %I64d\n",cas++,ans);
}
return ;
}

dfs写法:

#include<iostream>
#include<cstdio>
#include<cmath>
#include<string>
#include<queue>
#include<algorithm>
#include<stack>
#include<cstring>
#include<vector>
#include<list>
#include<set>
#include<map>
using namespace std;
#define ll __int64
#define esp 0.00000000001
const int N=1e2+,M=1e6+,inf=1e9+,mod=;
ll a[N];
ll b[N];
ll ji;
ll mulmod(ll x,ll y,ll m)
{
ll ans=;
while(y)
{
if(y%)
{
ans+=x;
ans%=m;
}
x+=x;
x%=m;
y/=;
}
ans=(ans+m)%m;
return ans;
}
void exgcd(ll a, ll b, ll &x, ll &y)
{
if(b == )
{
x = ;
y = ;
return;
}
exgcd(b, a % b, x, y);
ll tmp = x;
x = y;
y = tmp - (a / b) * y;
}
ll CRT(ll p,ll m,ll k,ll l)
{
ll M = m * l;
ll ans = ;
ll x, y;
ll Mi = l;
exgcd(Mi, m, x, y);
ans = (ans + mulmod( mulmod( x%M, Mi%M, M) , p%M , M))% M;
Mi = m;
exgcd(Mi, l, x, y);
ans = (ans + mulmod( mulmod(x%M ,Mi%M , M) , k%M, M))% M;
if(ans < ) ans += M;
return ans;
}
void dfs(ll p,ll m,ll pos,ll step,ll x,ll &ans)
{
if(pos==ji)
{
if(step%)
{
ans-=x/m;
if(x%m>=p)
ans--;
}
else
{
ans+=(x/m);
if(x%m>=p)
ans++;
}
return;
}
dfs(CRT(p,m,a[pos],b[pos]),m*b[pos],pos+,step+,x,ans);
dfs(p,m,pos+,step,x,ans);
}
int main()
{
ll x,y,z,i,t;
int T,cas=;
scanf("%d",&T);
while(T--)
{
scanf("%I64d%I64d%I64d",&x,&y,&z);
ji=x;
for(i=; i<x; i++)
scanf("%I64d%I64d",&b[i],&a[i]);
ll ansr=,ansl=;
dfs(,,,,z,ansr);
dfs(,,,,y-,ansl);
printf("Case #%d: %I64d\n",cas++,ansr-ansl);
}
return ;
}

hdu 5768 Lucky7 中国剩余定理+容斥+快速乘的更多相关文章

  1. HDU 5768 Lucky7 (中国剩余定理+容斥)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5768 给你n个同余方程组,然后给你l,r,问你l,r中有多少数%7=0且%ai != bi. 比较明显 ...

  2. HDU 5768 Lucky7 (中国剩余定理 + 容斥 + 快速乘法)

    Lucky7 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5768 Description When ?? was born, seven crow ...

  3. hdu_5768_Lucky7(中国剩余定理+容斥)

    题目链接:hdu_5768_Lucky7 题意: 给你一个区间,问你这个区间内是7的倍数,并且满足%a[i]不等于w[i]的数的个数 乍一看以为是数位DP,仔细看看条件,发现要用中国剩余定理,然后容斥 ...

  4. HDU5768Lucky7(中国剩余定理+容斥定理)(区间个数统计)

    When ?? was born, seven crows flew in and stopped beside him. In its childhood, ?? had been unfortun ...

  5. 【中国剩余定理】【容斥原理】【快速乘法】【数论】HDU 5768 Lucky7

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5768 题目大意: T组数据,求L~R中满足:1.是7的倍数,2.对n个素数有 %pi!=ai  的数 ...

  6. hdu 5768 Lucky7 容斥

    Lucky7 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5768 Description When ?? was born, seven crow ...

  7. HDU 5768 Lucky7 容斥原理+中国剩余定理(互质)

    分析: 因为满足任意一组pi和ai,即可使一个“幸运数”被“污染”,我们可以想到通过容斥来处理这个问题.当我们选定了一系列pi和ai后,题意转化为求[x,y]中被7整除余0,且被这一系列pi除余ai的 ...

  8. HDU 5768 Lucky7 (容斥原理 + 中国剩余定理 + 状态压缩 + 带膜乘法)

    题意:……应该不用我说了,看起来就很容斥原理,很中国剩余定理…… 方法:因为题目中的n最大是15,使用状态压缩可以将所有的组合都举出来,然后再拆开成数组,进行中国剩余定理的运算,中国剩余定理能够求出同 ...

  9. HDU 5768 Lucky7(CRT+容斥原理)

    [题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=5768 [题目大意] 求出一个区间内7的倍数中,对于每个ai取模不等于bi的数的个数. [题解] 首 ...

随机推荐

  1. Oracle Schema Objects——Tables——Table Compression

    Oracle Schema Objects Table Compression 表压缩 The database can use table compression to reduce the amo ...

  2. javascript中innerHTML的问题

    获取document.getElementById()时,使用innerHTML获取标签获取内容,要注意: 1.要让内容先加载完,才可以使用,不然获取的是空,使用:window.onload = .. ...

  3. Java 其他对象的 API

    System 类 (java.lang 包下) 该类中的方法和属性都是静态的. 常见方法 // 1, 获取当前时间的毫秒值 long currentTimeMillis(); // 2, 获取系统的属 ...

  4. CentOS7保留默认Python版本并安装更新Python2和Python3共存

    CentOS 7 默认的python版本是python2.7.5.因为yum依赖于默认的python版本的缘由,所以要先保留默认版本,并修改yum文件头部后,才能开始安装更新python2和pytho ...

  5. NOIP2018酱油记

    考完了,终于有时间来写游记了. 有一种悲伤,叫做知道正解是什么但是就是不会写... 有一种遗憾,叫做能拿到的分考完才意识到... 有一种$NOIP$,叫做$Day1$原题大赛,$Day2AHOI$.. ...

  6. java生成jar包

    Java编写的application程序是否可以终于形成一个类似于exe一样的可执行文件.难道就仅仅能用命令行执行? 通常有两种.一种是制作一个可运行的JAR文件包.然后就能够像.chm文档一样双击运 ...

  7. SAN,NAS,DAS的差别

    ※ 今天有空整理了下关于SAN.NAS,DAS相关的东西.和大家一起共享学习下,如有不正,还望多多包涵,多多指正. 在网络存储中,有着各种网络存储解决方式,比如:SAN.NAS,DAS存储网络.它们各 ...

  8. Android 实现瀑布流的两种思路

    瀑布流怎么样我就不多介绍了.下面说说我想到的两个方法. 方法一,控件的叠加: ScrollView+LinearLayout.在ScrollView里面加一个水平方向的LinearLayout,在水平 ...

  9. corethink功能模块探索开发(十四)后台编辑按钮

    效果图: 1.添加下图55&58行代码 2.实现edit方法 位于Equip/Admin/DeviceRepaireAdmin.class.php中 public function edit( ...

  10. PAT 1126 Eulerian Path[欧拉路][比较]

    1126 Eulerian Path (25 分) In graph theory, an Eulerian path is a path in a graph which visits every ...