题目描述

输入

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAyYAAACJCAIAAABW97vDAAAgAElEQVR4nOyd3U9TWfv39x+wT3rIAYlJQ8KBiTHEAwi50x5ANCSUaAjhdtKA0bRkxhTGUNRQMEOLoYtnhjZoGcedue2jw1bYcX5T57HObVU6E3Bk/5wS6Y+pSrnbkY7CgPTZ8LSy27Weg763u2+8KDOzPkdiu9fLta517e9e69qrBMJgMBgMBoPB7DLEh24ABoPBYDAYzF8fLLkwGAwGg8Fgdh0suTAYDAaDwWB2HSy5MBgMBoPBYHYdLLkwGAwGg8Fgdh0suTB7Ev4326CednEfuh35CMzRvcM2X/BDtwODwWAwe50CJNeSRUGSYolcrdUD0KuQlBJEpVwzAMBFzemGCpI8aHC8czMddRUkIZYz3t1v81YJv2Q6ZBUkQcgZ3/utGXLPbp5t146PgbpS8jDlCr3f6vcE67OmY6KK+lPqPgAA0MgrCEJUpxoAAIA+tVwqJlpp72b0u/Ctw9jea1+CxV64XSDv+2mk64xm4Jy8UtJieOTjYeyjEDf7TZeyx0TfMGnO9Nx8xsU+gauPeltNDm7bg8o9BtJ9ZSfGPWEUTp1Q4T/F/IqyOg3qybJPGM+OyNCgmzlbV1FCEArGx2+vqBDnujN49pz2snncbOjR3XYFYP6LiiRjpHbWGnkJcc5bZ5UXx7/T1xGlh6m5VKcMc9OfS8mDJ5iF8HtpDQaDSSO/5Aq7qCMtNz3Rew/HAklS+Av5pwb+obb5EUI8C8R7/5bAsUDy3iVXcN78EdlEeyG/7Pj+5oP5QOZX4NLM4wWB/y+QbV7+Hnj3i/Ejw7Q/cguAwSndPqJCbVuOfgpfmI/12PyRGwEMzH7ZcIJZhMVeWAjBJcdt0HK4Fkz6Mz8MzJhaB+yrIYQQXH3Uc0gs1f24ChFCcHOebj3QYXnDI4QQfGVpO6xk3DEJwL+xdh81/PdGMfYQIDA3qqyp6X0YUZrpE+rPMb8QQpxrVFVZo5tY2ppC4pdnnrpTxRDPAvF2JRcMzH5Zv7/TshhECIVc1GHygMr6uvhiCphoKSO1TWsUSfi5ueFAE70A4ZLjNvPAvZ76MQy4RpWVst6J33debKbUs+fDEQbzgcgvuXh2qIVeiE3RNMmFUHBKe4rxoT/LLeGDSK4CKl23a05uo1XbvHzXge8cX523vIp5UcBFNRLEcbM79ugPF+gz11xRxfXKomzQTr0t+sI8TfC7H1DdjbX1auqB2y90ywn7bRc+ot0pdZEfmeeDCHEOQx2psCxFPwotWU6TVUbHu9h3N56A6k+YxZ1abEMI/Xkl1zZZsWvOpqmrnZBc6w7D4cQcDLy0UuPscvEFFjLRPuBI7REn2evhCIP5YOSVXHDdbhiYWov9mSG54AJ9btQN98xsz8OelFz86yfG46Itt2qbl78POMeXl20rsV0O6GFayohqkzO+7cGzg2rrSvRDuvkgYIOw2AuzAv3uB5S6/oi871oWsRVh3WE4TJD1YHo1cllwSrePKFdYFlHomalaJAZs/BbNs0BMNFKu+JP82yltXXNCru0Ef0fJFVx6cqlJlK6udkJy7cTEL3Ci/c0l158gHGEwH4z8kivgfjqTeBzMkFxo3f14djkmuT66+i2tGxihbxgUR+rB5Gr8FsS/mjB0tOmoUVOPsuubWaHEl1gahER//6e0QlIzJML+KWOzpIwgJIDlEtke4v77jjGdboSmv1DWt5tnXy8+GOkdujZ+TSOr6hif30i0/8gZAPSXzfQ1/emWszfYpXiaBeR9jwxtKt216yaNquv6DJeoWjLw3Z1hzSfHyipa6efCqxn84uRId7v2Ck1f0bZ3j0wu8gihsMc2rFPViYkKuQYAQDvSE8I3nMygNvEFMObgIos2Qd/EcFtb/7XRyxql5vrsGkQwMH+nv6v/Kj0+br6kVckOAZbPerlg8zpkcrVef17RCmIZ3yHOyQDdJfPopa4WlWHiVWxc1+ctg13aKzQzZr6sVdU3AJbLMo5CrRJuQQy/TV1ClGrs6wKfhVasZ0pVWVRUrgsFu/zGwYCWSkkLuO1YyptMwy/ZgUzaPhrN2U+SXOt2TSmRIbkqNfZ4M3M0O8w5bmkVUpIolSgMP9i/N6oby4hSicJg8wY4B9VyqIQ81NL/ww+30hINi5NckSy0Tu3Vb+iruvauq5O+YMpHqma5ul/f3dbafz+WoBb0TX6lkrWo9Re7FW39tt/49MSplSlDq0RMRnseS4UUD9x+MNxz+tjBslZ6fjNNZKaVIDA3FZJmMLUspE39TsY4oKoTRVNFDbTjbZK1W6/evSFUQuY0yRyBxBzs1qha5HJ5o0ScnieXOsEDLyz93dqro8y4+bL2dP0hwPoLn2jxkUq1RtyA+nsOGuhGbtCGNkn9F1Or8WBYQF+yj3XYaxseUNWJRBXy88nWS5ghJYrmHJp42uuRM6C/t0+v16qa61VfTfqCGUOc6iSFhyMM5m9JsW8sZkquGDwLxAQh/YLlQgihsIuqjW8AwUVrR3WlbtIPEUIbLur4/o67bwTDCc8CsUhcbxQoJO2W42PkUckV+5Asrzc84SCKbAmRBw+rby/wCCG0bFNXxO7THAskxKE+ezTMBTy0oqT+UiT3Gb6521F+WDe1AhFCm05KJu2wLsJ4q2oM7Po8c6JKCh4LvEcHf5/oPSozzUTXPQIzJtnRWM5E3ifszC/wb6xd5ZUDU/4QQnDTRcn2d1lfu+jmtliqONxgB2uiIqCAJ3i4Mg1kJc3XX25ChPglW09VK7MIIztirdSvHEIILjKtJU2mWQ5FlpqaaW90jNZYcBKwnPA4ht1ZWpW1KUEWHCCyZdJwLJAeNDiEctFzX5j23TWXBbRIj6lHvi9AbAnCOQx1hKiNWdxEPkZOZEquFAHEs0Aszt5zv01dsl8Z2SENz1G1FdF/o4CLOm9yRjRk6jgWI7ng0sPemo8iYxfJW5LF8oeg/zGoOdhsdm0ihKDPdlbWynggCvmnv6gpaTW/3EAIwaV/n62KboymLinxPkaR1HOOBRJSfHSIfeNhPimXfj4tdENNW5TKnJuEzJxtPVBwQYtngZgokYKfM0oQmiZvBMcgr22TJ/jEM7qtOZ5NsfEE1AyyfEYh2UgtPLVHEQM2GdjVmCeUycwvICqiLznGOv8qV2bbsg5NaqiEbx3GRlHNF5GsyrxO8v5fUcJg/hTsrOQqqaXmojE4IYngO4exipCZnNH04rCLqiWVwtsEWQspQHIlNnp4H6MgSs7FsqqTQ0BGOFixqkTiZtoNI7fYxKZVwEU1ki2ML7qAJ6o2Pcv+Tlqkj8k7TQEX1UhE032Kl1zvfjFUlSZqDM9RtQdabn57uXp/I/jeuRxECCHu6di9/4QFL88gPG9uIONZ53/YNdVkg3k+jJB/QlMubjA/DyOE4ALdJI7InZDTVC1qBndnl3mIUJhj79zzBIXH0fvUJNyqbATd5uNEiq2SeW1VVWe5Z+S+MBW45rzZ2yg5pqYeurfyLiHkPYyyrKrd4uERKkRyIR8jF52xrmSra9mmrhApLW8gQhuT2v1k9N/QTXeaY7loW5ZcnMNQR9RSiZy28BxVu6/K8Mu7yKsb8bkQH+7wc3PDvpLIiy8o7LdfKI9mrRVwN03e2BVCQHKlzc3s2jS75BIqQXCaMB4hOZdfciVN8A2nSSZqBHedESGzyo498IQzCsnV/1ySK2mkvIw8JtQL7UuOsd6S5Mo6NOmdhW6zjIiESiy5MJgtsrOSS1ASRVKea9XUGBOBUkuS1FJhhRQiuQoJARnhgGeBmBCprCvhOaq2hJCoqWgrxyh1bbSQ/BkSkT4mm4X3MYqYPihacoVdVC1RIlFfibaFuaKWlIjBpG9CJyUJgiAIca3ScG8+Kibylh8RK9kPU4Ccd+aJ3UqpJSVRs8HfJ3qPkARBEKRY+rHB+oKD2cZxdUm4Vdl4bVUdIA7Es7XS8DLyiiymzn2hEJGNRWmdsqCNxQSQm6Fam9rp2EkQfpu6JFNyJb04iSIOmSPfKOy3nSsRqSxvNjemjBqgqRWpLG946BnrjD9gbFlyRVw3xQG8jFxM1FKu0AuzrJRoii9YxjroNsuIfU2J12ISbP9uKiS5shWY59rcJWSZJoJlF2dbuPSwV1pKEARBlEmVRuu8v7DlaoHSBCRXooSE5Cq0LznGOrw1yVXwWMdDJZZcGMxWeQ+Sa8NpkhV6rM4Hklwlaps/9MxULRKOFPklV2YfI5IrsiZUtOQKOU3VAocwvVt7u765/OuP1lsUUNWJ99VEDybIW/66w3A4y6i9mjCcrJS2myw/uZZfJJ65ef/b9Y1l16T15lWgqheTDQbH71nGMVursrXFriklYusrmWSXXHkuzA6/5Lx3VV1/pLCMLoR4r/XsqZ77vyX6GXpmqhbt007F35MMTun2JS34IZRXcsX3Fp9NXvzc9tZJ1VYoLW4PfTFp0W6rkkvAdb2MXExUm5zvHIaDZKZvhByGg1lO+foTSa4s00SQomwL+bW19c1l1493b1J6VV05WWN0bBSyXC1QWoGSq9C+5BjrEJZcGMxe5z1IrrDffqE85f6UlpJfSCHpH0G3WbYjkstvU5eUtzIeiP6wa6pTN01S3gzIGQ3hxlT//pQ+bjhNMmJ//1RBkTrxBZ41KBgv8k9oyktStjIDC4/Z7wYa4hsKcNM5UhPtY8bl6USGoM6QyN2PDMGai/onKVLQnshdP3ID+HnVce8e3deQWH1Zd5qOisHPK4Lj+PskEG6VMCGnqZooy7L7E+lLbWJnuYgL8wH97gfX+uRHsh8SgRBCiP/tfv9nX8cyl6H7mzPmFxC9ndJKktaKNr10a2xwo4RdVG3Ojkf3Fv95SnnhgR8FXFSj6JR24Iw56YSLLW8svp3Spu73hZ6Zqkv2ayc3Il6dfJ5FxKvXJjTlJdHdqAiBhcczSxl7RkG3+fiHkVw8CxTRirKWIDhNZpa2tLGYbFuOBaqEFN58ZqqpBSxXwEQTKK1AyVVwX3KM9e5KLug2y4hIqCzUSXJZCYP5W/IeJBdCvJtRVsbSrhHiF5izxinBN1lyFAI9TEtFbCskMG9uIbcsuWpGnNE3rUIrNk1Vy3VXAMbSd2Lp8wjyr749e3GSy2yVILzH0h5PLUfQP6mrrI5mAuW/UcUTV+G6ffC8bRmhgIdRlUVzaRFCwVeM7qL9/wDxYcBGD+yAbvPRSD6QwOUZbD6nWw8d6nm0mjIEXouiPGGojSegUiQGU15GowVqceUgG5UUQbdZqbS8goLjuPpzllYJkjcfK+g2Hxd6J7GYRK5c5DwKFa5Mg8Ya9Zfj0c2d8W+0H/faV6JHoe7/OHryFvQwrdLUF1fhur23NHtWOEIourcY246MbCSlisstSy7IL1ra429+oJB/aqCyPHLsJ9ycp1vLanqiR/nHvXpjnm4rS7xHEnzF6C5OrSCEoI9pIWN70LzL3CR+n5Ir8cbMuv3C+eiKZvYShKbJlODbrsVKrppK8CT6bAFfmI+esbzhC5poGaUVKrkK7UuOsd4FyRVvD1yZ0h0ui4bK3E4iYCW49KhfVqccncPno2L+5hQsuTgHDQDQn5MfKiGI8jrVZwCAYZsncsMIe23DfQoJSZY1dgL66aJjDETfhL8Q+Q7kXliHlLKWc3rQp27X33YJvP+cr5AQ56Q75O1DZtp8eXCE0h0jCLJC1sE4F2xX+hRSkjjQqB6kHW4HPahuPECQUkXfFdt/ntuGLygkpURZoxqMOTg/C1q66e9o6sYd+4/36eF+4/euRO5RiJu/N9Ta2NJ9EWi72nXfurhQcqv0ud955l9NGE43K7v1+m5l8+nogQthT7QB4nqVNmGxNODqY2PzMUVfb3vXaPR3SKB/3jrUKjvRrddr1Z2623Mcz4L6DjCkH6JGx83G3p6vJmIHAQhcnlkFN3db21Lfck4PBvo04JZzDSLI+2yg6Uiz9uvxcbPJOD5xF8jqTqp147MT/6u+c2BIN0TRt8zGvh7TRORkAYFxzN6q9MEFAGg/bawoIYgDjep+AIyMU0D2hJym6qTs4MIv3DZBD/NJGZFG/NjV4BJ7o0fVa6JvmDSqLurnJT7ZzgEX1ZzzBQuEEEL+CU31Z/ZIJnv4ufnoyUjGOkJJflLWqDbaFhaS54JjLWVqZJwzglD0fBOlXKm5qNe0NSuHk0YhxLm+1TYfbem+CPR9mv5xZ8Th4Zrrtq65/kS3Huj7evtvxRLX4JqTPidvGzSPmy/3X6b0TQRRUlF3lnnhSrRQL3AGQcRK3sRkNNm8fm+OuekV2uSFf0wbT9Qrevrae667uNQChUrInCYCkcWTHASezv6QzbaxCc6x4GQnGNQNUfT4NWNvnyl2eEreiZYaxB7PJltjITUWLT6lQWdjGUlKFH3DNm9YaMpnmcqCYx2vWlx3Wgu+yjRvUtvURtvzXGHTG4ydp/OpXjcwQt8wdZ1SgjuJUJnNSdxBQSuFPeMnyvYJv+uNwfydwD9rjdljvPvFUNW87dWs90v4ubnhmEFQC2Ewf0pwShYGs/NgyYXZa2wuMp/8IznNaK8DN9jB6tbYj0JiMH8FsOTCYHYeLLkwe4/N5/TH3YxnGwtd4ZfMp63y7LQapnZsb5J3Mx1n6fnt/qo1BrNXSN2KxSfIYzA7BZZcmD0I5H3/7j97XfCHofYWcG3268/6k0+UwGAwGAxGCCy5MHsTyC852YVCf03xgxHwzDzP9lt4GAwGg8EkwJILg8FgMBgMZtfBkguDwWAwGAxm18GSC4PBYDAYDGbXwZILg8FgMBgMZtfBkguDwWAwGAxm18GSC4PBYDAYDGbXwZILg8FgMBgMZtfBkguDwWAwGAxm18GSC4PBYDAYDGbXwZILg8FgMBgMZtfBkguDwWAwGAxm18kruYJe21dAe7pOTBKiOtUAiKL9tLGihCAUjO/D/55v2M101FWQhFjOeD90WzAYDAaDwWAEKHCVy8vIxYQYsMn6in9Jt8gAy+1Ku4qFZ4G4GMkFl2YeLwS2XN02L8dgMBgMBvM3YxuSC4X9Nt2n1te70ayiKVZyrds1Jxnflqvb5uUYDAaDwWD+ZmxJckHut4U/eISg+5sz5hdwF5tXMEVJLv71E+NxkXyrmmmbl2MwGAwGg/n7sSXJxbNAwfgQQvwfC7/9303fTyNdndqr39BXde1dVyd9QZTIr5IMfHdnWPPJsbKKVvr5pmDZ/KsJQ0ebjho19Si7vpnlQgghBNect4Z0l6+Nms61KIcnfMGk7y9OjnTI5Gq9/ryiFdgiH/EsEIs/uvotrRsYoW8YFEfqweSqoBjccDKDWlWdmKiQawAAYMzBhRFCCAV9E8Ntbf3XRi9rlJrrs2sQwcD8nf6u/qv0+Lj5klYlOwRYPuvlmf0SaicKcU4G6C6ZRy91tagME69i64br85bBLu0VmhkzX9aq6huiO7aCxgkvMCcOktLPp7NVjcFgMBgMZo9RvOSCnOeeThpb44FLD3trPjLNRjK6YGD2S1mNbmKJRygig0TiGgO7Ps+cqJKCxwJpX3DR2lFdqZv0Q4TQhos6vr/j7hsIN9jB6qavfw1AhDYXmbaS+i9nAxAhhODKNJCVNF9/uQkR4pdsPVWtzCKM1EUQ0i9YLoQQCruoWuK42R3MrBAhhBDHAgmRskzFv7F2lVcOTPlDCMFNFyXb32V97aKb22hvRCjCDXawJqo5My/P7FeWdm48AdWt1K8cQgguMq0lTRHTQQ/d3Ex7oxpxjQUnActlMQ5C8Hd7f7NUOeoK7IkVRgwGg8FgMHkpRnJF31i82C2vIqOCg3MY6ohayhVfbQnPUbX7qgy/vENRyVVtehbKWix85zBWETKTcyN6tYuqJZWML+i3XygnPzLPBxFC0Es3EYcNjnWEUHje3EBWqG3LCCGE/rBrqskG83w4UldJLTUXbYiPkROS7Kn9GZrp3S+GqtJEU8NzVO2BlpvfXq7e3wi+dy4HEUKIezp27z9hwcszyNpO/4SmXNxgfh5GCMEFukl80OAIIRRymqpFzeDu7DIPEQpz7J17nmAW43z4V0QxGAwGg8EUy5Y2FuPJ4+E5qrYkVXx4Gbk4KsLy51cFXFQjQdSqqTEmAqWWJEklyHlnpu3WxH8G3ebjBNEaW3lKIq2uIiVX2EXVEiUS9ZVoM5grakmJGEz6JnRSkiAIghDXKg335iP7evklV/Z2Jjr2xG6l1JKSqFHh7xO9R0iCIAhSLP3YYH3BwTzGwWAwGAwG8ydiS5Ir7Hnw7QyHEAo9M1WLBCRXtckZKkRybThNMqHDvSDve2RokUpVly0//rrsGY/pp3WH4bDwYWDbk1whp6la4Fivd2tv1zeXf/3ReosCqjrxvhrDf28IXZ5Bjna+mjCcrJS2myw/uZZfMHJx1Ki8/+36xrJr0nrzKlDVi8kGg+P3LMbBYDAYDAbz52M7h0QghN5OaSVRgRUh9MxUXbJfO7mBCpFcYb/9QnnS3hlCMOB+OuNzULJ9opabHh4iFNdPXse3D589vFBO1BkcXMr3l/ktSy6eNSgYL/JPaMpLUvZAAwuP2e8GGuJ7pnDTOVITtUDG5cL9ymznmov6JylS0J5A3Kpi8POq4949uq8hviuK1p2mo2Lw84qgcZaxAsNgMBgM5s/HNiUX5Bct7eWHdVMrECGEQv6pgcryTsti4i3CPAc38G5GWRnLEEeIX2DOGqdefqsg47XBDXawkpAA1skoDOz/e063HjrU82g1+ftcuEjJFXBRjYTM7IZw3T543raMUMDDqMqi6fMIoeArRnfR/n+A+DBg16JddZuPKi1voODlGWwKttNrUZQnzLjxBFSKxGDKy2i0QC2uHGQ3It8Ous1KpeUVFDQOF8bp8xgMBoPB/Oko7Ad/9J2NZSRBVsm7L2YciwB53yODUq7UXNRr2ppjBzqEvbbhPoWEJMsaO/U5TlJACHIvrENKWcs5PehTt+tvu9YgCvpsg01Sufba2Lh5xMjcvwuO151S627OBRCC3NxtbUt9yzk9GOjTgFvOtVBSXYB+uugYA+rGMqJUorgwbPMIVgxXHxubjyn6etu7YsIF+uetQ62yE916vVbdqbs9x/EsqO8AQ/ohanTcbOzt+Sp+VoXA5QL9Sm8nRJD32UDTkWbt1+PjZpNxfOIukNWdVOvGZyf+V33nwJBuiKJvmY19PaYJHw+zGAcfEoHBYDAYzJ8P/LPWGAwGg8FgMLsOllwYDAaDwWAwuw6WXBgMBoPBYDC7DpZcGAwGg8FgMLsOllwYDAaDwWAwuw6WXBgMBoPBYDC7DpZcGAwGg8FgMLsOllwYDAaDwWAwuw6WXBgMBoPBYDC7DpZcGAwGg8FgMLsOllwYDAaDwWAwuw6WXBgMBoPBYDC7DpZcGAwGg8FgMLsOllwYDAaDwWAwuw6WXBgMBoPBYP5KQN5nGzwLro1TPa0dI9Nv4IduUAQsuTAYDAaDwfyFgK8sbQrKtYEQXLf3lpZfsPvDH7pNCGHJhcFgMBjMFuF/sw3qaRf3oduBSSU0Rx3e32B+HkaIZ4GYaKRcAYRgwDXWO2jz8R9szWvvSK5Fi6KcEEvl6j4A9H0KKUmIKuTnAQB6zcf1FSXEQYPj3UumQ1ZBEoSc8W23uhDnujN49pz2snncbOjR3XYFdn4Mwm6mo66CJMRyxosQQmh1GtSTZZ8wnuCO1/XeCXPTn0vJgyeYhd16dgjv4HDvHkE3c7auooQgFIyPf681wzXnzV6ldvQ7cJQgmyhX4L3Wnoug1/YV6FNISIJIfrgMe2zG8/JDJWRFU6fOPLW04+b6cGNREJs++9dgQFUnIgjRGetKKP1zuDypqyOJ8jrVZ8B4z725S3eFoJs53ygp26tWEoJ7DKT7yk6Me97rOkWIc/0w0n1S3v4ZABc1imON6n9N+VJDN3zrMLb32pdShgquPRs51RqN+TvO9ifXzvsh5Fz3Rrrl8g4tAHqNor7xLDW1uBu+BTnHSFN7mt9CbuZ6l0pjukGbelU9Y04urUeBeXOLSEa5oh0JrdoHWo0s94FE156RXOE56sjHtCd62+BZIE4oFQT9k7p/dNv8YYQ4Fki2fQ+Ggdkv6/d3WhaDCKGQizpMHlBZXxdfzNLM44U8NzqeBeJ4RzjXqKqyRjex8zebnYJfnnnqLkh9woBrVFkp6534fedcN7P2HRnuXYdngfi938DC8+YGspX2bsLlX27ffFTYqL0/wq5/tdTVlhP7lZZXSS3bcJrUJuf67tX7QcaicKDvtqJsHxl95k4m5H98ufkf+4jSXvv6rg/l3rZSRhwIzI0qa2p6Hy69Nx/nX09Tp2uagXXeH6szuGjp3C/tu59QXTAw+2XDCWYx3irOQYNuZaP0IJm4eRVDcMlxG7QcrgWT/pzf2/7k2jk/DC5NU8qaFmB9ERMxkF+0tO+v67n/WzHuBfmlXxhwUlo7OCWwAxjmHGNA09YoOUCm+e3mc7q1ti1qB/6NpeOAkvFEF7E2fXZK29lUUd5h8W0mVbVo/fSUwZHbxrvFnpFcPAtaaC9M/JUsuRBam9KeZ3z8Dt2D1x2Gw4lCAi+t1Di7XHz0WbdrTuZrSYrk2vus2DVnP1wgzqwdS669VWnB8D7mAvjpoaFKRDaY5+MhFHqY00Y2uIt3zr1tlrDfdvGsCTQR1dqptZRPNn6hjJf09aUilXVl99uxt630YaNQdJlHVPPFtD91vSQ8R9WWlmsmovdq+MqibNBOvU2/fAsxH/rdD6juxtp6NfXA7c83PbY/uXbKD0Ork3qpSAamV1JrDbioRqLQ9KkQ535Idf9TUt9FPXiZe/Epw2/hO4exijxtWYqN1JJFQdYZHMn7vEGftbtSmrzSATfYwerWJK38Htkzkmvd3jcwFX98yJBcm14amN3BHboH70Qh/OsnxuOivIX8mSRXcOnJpSbRhwrEgrVjybW3Ki2YZdu5izZ/wEOfIImkCOi3nTtn29Wnyxu8IYAAACAASURBVL1tFj8LLjBzd9UlaTGBm/2aevDijkpUKjO/eA83gj1spQ8bhRBCAQ+jKiObTLOZ6VkcCyTx5R/ooZsPAgGJU1TMh373A0pdf0Ted60AsRVh+5NrR/wQ8h5GWSauN81kbvXwLBATlRp7btkW4twPKfUxqbzvWj6xlVRssm9sOE0yQgxYPvkbJbXUXJj3sT/8dzRnKzil3VdSS80lBODGpPbASdrzLn+VO82ekVyBhccziWXjDMkFA+6nM8uxVa6PRu7SQDdygza0Seq/mFqNP4sEfRPDbW3910Yva5Sa67NrAoMY9tiGdao6MVEh79aoWuRyeaMkXlcs+0oy8N2dYc0nx8oqWunnm4EXlv5u7dVRZtx8WXu6/hBg/U5mUBspRAMAAGMOLoucT0y/1ESTWKKSWH/PseW+IIQQ5H0/jaia5ep+fXdba//9WGJg0Dd5tatdd5X+5qq2s2vkJx8PE20Q9993jOl0IzT9hULSDKaWIfI7GeOAqk5EVMo1AwAYaEfk6S3EORmgu2QevdTVojJMvIr4dmqaWo5iEUIwMH+nv6v/Kj0+br6kVckOJU2QGNlq3/5wZ7dzWq6Yf8rQLBET0fkb9wT9/Z9o3cAIfcOgbFKaZ1YWHxp7h66NUxrZ4bbxF5vxQSbq1ADoLpvHrw0oWzTX2ddJfcxoZ7xVA7cfDPecPnawrJWeF86ZEB5Hr+2rJHNlul98RPq+e3BFc/poWVkbPb8R9ZauTu3Vb+iruvauq5O+IOIctFYhIQlSohz84dEPRnVjGUlKlIM2T5h7erWliiSr5P0/eNczZkGOe2LomUlxww0RfGNRisj92smNyH87RlSMpxhJUZR7x8ciZYptd3zzTNX1ectgl/YKzYyZL2tV9Q2AzZ5JHZ6jFP9y8c9M1aKk2wTcfPntpR9eBVhwgDhscOTZGILcs1tAf9l83dR1Sml4FO14IfFk6ppGdd5gps2XweddzSW5JFfO6EHUqUG/pm8AaFWN9R0jk0lZO/yrCUNHm44aNfUou76Z5RKzLN3V4Zrz1pDu8rVR07kW5fBEdLdOKA4I5HQKufEORCGEEIIr97vKyZJ264qAm3IskMRy4EIr1jOlgktBBUou/o2DAS2VkhZw27FUTHbv9ifXTvghgm9sXVVESadANpjAHTyNyBaqpLIFMI43hYvrDMm1YtdUZkguolRj9zsMB+MZrut2Tam4mXYnGee1VVWzlWyibbNnJFcq2Qcs4vT1gF2FKLLSWxbT4/wba1d55cCUP4QQ3HRRsv1dVuHRTF07SZshPAvEInGNgV2fZ05UScHEM7qtmV6IjtbGE1AzyPIZheTqSaLwVI/hWCAhxU2GbfQF+h+DmoPNZtcmQgj6bGdlrYwHIn5pQlcj+3I2mg/BzZo+imdC8CwQk+X1hiccRNEVYJnZDTObF+tvdSv1K4cQgotMa0nSw19m1wSLhW66uY32RsQJ3GAHa7IEO6En7x0b7ix2ThtELyMXJ+ZvxBPqjSwXQgiFXVQtub9K/V+veIhQ2G87VxJ73uVZICakPdEsWsh7braUNBodb3O2M9Kqo0PsGw/zSbn082kB1Z5vHHMuVPAsEJNlNUPT657xE+UyML0Klx721nwUG0EYmP1SFs0sXLapK0RKy5vY2MX+jcKuf50yPdtE7zzCs0AY6L6hMD0LIYTQH3ZNNSFSWd7wCAXd5s+KSvPfonunTrHtj28OF4Ieurk5nhGxxoKTuSTX0p0zYDqIvIxcnNi44edvG7/38AEX1UiUnLPl2YtZY8GxJmo2gBCCHqb1UNIaQ654sjShk1ZFnBAhFPDQClFW58lr3rirhzjHpfr4vhJctHZUV+om/RAhtOGiju/vuPsGIiFXD22wg9VNX/8agAhtLjJtJfXx6rLHgdg4Znfj7Uehdx76BElIBLYLEULotVV1IJZyzrFAetDgyCI3ckouuOaygBbpMfXI98WJrcjV259cO+CHCHroZjIh+FIJrVjPiAjBDOkQ57oDWo7Uq0fuFCO2om1M9w0vIxdnSi5CzvjgmvP2ZWCg6PFrQ+0n24yPUt9S5FggEed8bNwl/pySq5ZyRf0hKYa++8VQVVod9cVIxDnQIqz680uuRDlow2mSiRrBXWdkK3iVHXvgCWcUkqsnuSTX9voSnDd/RManh39CUy5uMD8Pv/vFULUveR017KJqY0vQSW/MIoR4H6OIu6xAsIuXiRCCC3STOBFlBLomVGzomal6fyP43rkcRAgh7unYvf8IzuasoXZHhluwkPy35KTlaB8jJyrUtuXM1ma0/LVVdYBspj0wRzs5FkiIapNTIGbHyD+O+SQXITM54yGRcxjqkuwQacy+KsMv7yIKIxq7305pJbE4/s5DX6RcgeyzQJDQilXbG91TgO8cxioi8oj52nr+cjGJXFt278IlV0Hjm8OFQk5TtagZ3J1d5iFCYY69cy/r+8hw3Q7OWF+nlrbp+/6rmy83EPQwLWVkC+PLY54/7JrqWAbPppduJRITMrufbzwBlUlOmNt5ivI6+MIsKyWbaQ+MDHTC38IuqpZUJhJwU1w97LdfKCc/Ms8HEULQSzclLavkk1w53Hj7UWjRoijPKjiC0+AAGav6tVVVLayrCpBczpu9jZJjauqhO/31urxsf3LtiB+GliynyaT5koqfBTWEQG4+QijEOcc0hWatpVOE5MpXko9RvJ+8yTT+nJJLKIaGXVQtUSJRX2GiXFFLSrLI2LySK6VquPSwV1pKEARBlEmVxtg7LDskubbTF/jCLCslmhKvHUQIu6jaNOv5GDkRvbuktiGf5IpWxHlnntitVEozcnUtuVh+aUInJQmCIAhxrdJwbz5LlMn7dLszw12c5Eoyo4+RE5L4GkZOycWxQBJ5Gs7ezvz+U8w4FmDP8BxVW5Jao5eRi6Mx129Tl+xXWl7BjcmLmoGLtRVKyysI3XSnOXJvyzILBFmx92oT2w3h5+aGfUSV0bE6ceF8MYlcO+DeOzO+ucqBv0/0HiEJgiBIsfRjQ+K9rUw2nCaN2R2MSqV9uqkghG/+/fnXMwEUsX9qukkuQpz32bT9e0pdm3S/yT1ZUiyWw3mK9Lq4q6+7qEaCqFVTY1FPp9SSqD2zujrkvDPTdmvim9nallRCTjfebhSK3LBjq/5pjd1gByuJ8tboc52XkVdsUXJFv/bGwYAWaZ2yuI3F7U+uHfHDyP7DcbNbqOUbT0ClSJQrPz36bmaNcnB7G4vLNnVFpuQqUec1Be9jFB8kS/ivI7lCTlN1rs3j7IXkkVyQX1tb31x2/Xj3JqVX1ZWTNUbHBtxVyVVoX0IOw0Eysw0Cl/sYORFduitOcvGvJgwnK6XtJstPruUXOe5Y2Yt9t/Z2fXP51x+ttyigqhPvqzH8t9BadHGSa+vD/d4kV8k5mz+cvZ35/aeYcRQg/QuhZ6ZqkcC9Krr8ENlb/K+FSeMFmzeyt/jaM9YZDb7ZZoFgu6O5JjE2F5k2ESHpNXymKCo3fAfce/clF+9/u76x7Jq03rwKVPVisiHry+fwhVnxlTOEosdhEwrG5/tx+IZjAyIEgyw4QNQANu9NM+ibMLZUHlGZ/utHl8+TNHmLmiw5nKdIr4tLLs5pkmU56yvT1SHve2RokUpVly0//rrsGc9u+YwScrrxdqNQjjUS6GFay8nEa4zbllzRLy85711V1x8pNKNr+5NrZ/wwOa0tjc1Fpk1EZr7GmElw2fkDpT4mLTijSzh9fp9uKr68F5zS7kvepMpaEpZcKWxBciH/hKa8JMXWqSn5WQvJI7k4FqgSC6Sbz0w1tWmPbjxrUGSbYFuSXAX35Q+7ppqoMjrexT9Zdz+eXV6f1O5PuTzkNFXHEhQKklw8CxSMD224qH+SIkXsvLRIC39eddx74A0WKrl4FjTEdwHgpnOkJstiVEbtO2KinIWkfQRfmGWlOyG5lm3qiuhDXtZ2FiDZNwofx5z2jPJ2Spu6vxN6ZqouiWVjRPYWjyqUeps/HHZRtaIT+oELMc/PNgsEgN6birQcF/+EppwkUnY5C2H77r0z45vDhXj284bEksC603Q0a4LIivVMr3090eDKM1owPBW5LQXd5uMFJNDATRclI8tb6JeR+RqdZasz3z7whHP4eYYj5XKeorwOvjDLSkWtzCIM++0XylOGOPWdp2RX33RSsn2ilpvR85Oilvc6vrV7w3njQC433nYU+sOuqY7ttQWXHP++bX3i4UKRQ7nKyxTmxCnzHAtqhVeDipJc0Rb53Q+u9cmP5N1u24HJtQN+iKJbw7Ej3fmlmXu37z32cDByKFd5RYvZWXDOZohzP7zW1yrd0iERG1P9+4nWWJZeZJM6WypeMgEX1YhzuRJsRXJFXu6tjKeIBl8xuotTgnu1xUqumkrwJOrO8IX56BnLGz4pNxOu2wfPC29pb1VyFdoXuDlPt5bVJBK3X3179uIkFwkQ8cvhypTucHm7ZZGP53oLS66wi6qNrBWv2y+ct/mjPwkQc8yNJ6BSJAZTXkYDWK4IySU+DNjo6S/QbT4aS81OI6P2HTFR7kJ4H6Mko1tXkJ+/3kQSW5VcR+OHEMKV+11Vylh0ztbOQlZJCx9HATLDE79oaS8/rIuG15B/aqCyPHogMEKRPYXYmnxk+yaRMZNtFghU+8aiOZs+HdZYcFjwcEW4OglkdfF3P9M+3An33oHxzSm5gLhykI0u+AXdZmXq6ZRxQivW7hPxupYsClJ0qOfRauSr8JVFuT/LflZKIUuW02SikWssOEyIAetlFAJb1cl+nmoxxP1KybOnz+c1b22KC8WFCO9mlJWx9HmE+AXmrHGKEzq/esmiSAxEZMNOAlgnozCwfN44kMuNtx2FIi4n7bK+9Hxv+vLJ7xuvvz937sZD+ny9THcnZTM96DYfL9XYBd7r24LkipWZ7yjUgicXXJ4CTYdarmf8qsoW/DC0OvVF/SGlOe1HjTaf062HDnXdfeW5+/mXj5c2PJZzfaMPb3TV/1N753nxZ7vnPgo1ikDQ23xOt0pju72bi8zH+7O+/Z3Mil0jiR+EAZce9cvqlKNz7+EXPPaa5HrroA0AXOyWV5EEKa47rQUADNu8kSEIe2zDFxSSUqKsUQ3GHItPadDZWEaSEkVf5DvQP28dapWd6NbrtepO3e05gYFPLeTp7A/DfQoJSZY1dgLasea1xf/UR9+951hwshMM6oYoevyasbfPFDsoAa4+NjYfU/T1tneNCv5eUDipNEA/nrVd6VNISeJAo9pkW3i+A31BCKEQ5/pW23y0pfsi0Pdp+sdjP3cQ9E0MK5vbNPqLGqU89jJ50JtowyDtcDvoQXXjAYKUKvqu2LxBBP+YNp6oV/T0tfdcd3EIQd5nA01HmrVfj4+bTcbxibtAVndSrRv/H9f9WNfURtvzhRzFun8E9R1gSD9EjY6bjb09X034sqyfp9W+C8OdWQjkntEdJ9qGro2bL/WPXNEf20eQFXUdzIuF5LF7uugYA+rGMqJUorgwbHv+n5T+vuXZQWn3jbv0v67feTR5nzb2X7a4kk6syGxnKKlV+viJGILkHsfyOtVniQmSdFXSQPcDOn50D+R9jwxKuVJzUa9pa068nB/hD7umWWP/I1LCvPnk0chrEwjlmAXJtuYcY0BzSioWietO6+jk4wjhpos62i6QrAp933ccKhP/wyj06hfannu/RWgnxvepI4cLuX/+or5zYEg3RNG3zMa+HtNExs+3wU33PWPcLNfZVYhQyGGQnrW+4aMRry9ySIeiD3xt9wmJzzj8bzYglzb3XRsfM5u+ZCa+A7KGU2r9zf+ZLWCyGJQtnYZrXxt7+4x9raUEKZa0GoSfUgTNi1D0nlfXqe/XjdygTedalIPJrg65F9YhpazlnB70qdv1t11rMCzo6kGfbbBJKtdeGxs3jxiZ+3fB8bpTat3NuQDKGQeMEVcXdOOcwa3wKIRC3PwPpvZjFeUy1QDQa05Jy/8ZfT0i8Pzh40Raechpqk7O4keR0+eBvlt+iIzevIZtO/UbRUVOLui1tFUQKWc9bNkPN32WjjKCzHw9E3Iv7pnOHKuoqFdpgb5bIa2MvaDAuR6y+RLwi+9+VBiU16k+A+ArmzcygpBfmr7ec0ZjukGbepRd16YL2Z8Nz1G1xxKvenjGT5Ttk4LH7+GXMvea5MJgMH83Fi3nv8715iZmz5B3bfWvBs+CshO05x2Ca89GOvuTd6ze/WKoat5Lv22aBgxOXb2c93itAgk+Hrqc5bEoCseCumbaDVGIe3b1ZL/g4RF7hfC8uaE6OWPh/YElFwaD+ZDAlR8ufP5kLwdoTJy/o+QSk2LJ0UZJmaj5+suUHavNReaTfxh++QBHmBcE5/jySmE/uZMX+M5x7fPo+nfW6lggIcSSxkaJWNRqfrmXJ/QaCxpbizuTecfAkguDwXw44PLk4OCd3LtpmD2BwL7t3wC/w9BAEqS4fsCWuRe5+Zz+uJvxFLnQFX7JfNoqz06rYWrbP4oFec93F6/P7cy84t23L9505UmQghsOYw1JEOJjOluOH7QOupnuHH2Xtw7nyOXaCSDvud3x8c0C8r12BSy5MBjMhwOuLCwUfSIiBrM3gLzv3/1nr88WfaLpbsMvO+cy0gq3CFx2zWRNffuTAbmZr89+cf/DdQdLLgwGg8Fgtgbkl5zswg6lTGF2FxhYcD7/oPoYSy4MBoPBYDCYXQdLLgwGg8FgMJhdB0suDAaDwWAwmF0HSy4MBoPBYDCYXQdLLgwGg8FgMJhdB0suDAaDwWAwmF0HSy4MBoPBYDCYXQdLLgwGg8FgMJhdB0suDAaDwWAwmF0HSy4MBoPBYDCYXQdLLgwGg8FgMJhdB0suDAaDwWAwmF1nr0iusNc2DD5T1ZUThLhOpQVRLmpON1SQBCFnfEUXGXQzZ+sqSghCwfj47bQNcs9unm3Xjo+BulLyMOXK9ZuYO1NpQTWGXzIdsrhxwm6mo66CJMRyxrvlehNwj4F0X9mJcU94BwrLIMS5fhjpPilv/wyAixrFsUb1v6aEfto9o1Or06CeLPuE8byf34EPupnzjZKy7btQHpKtnTqsmAS765NxQkuW0yRRJpF3agEAfQoJSRAVcg0AQK85XV9BEocNjpWdiS1wzXmzV6kd/Q4cJcgmyhXYuV68B0Kc89ZZ5cXx7/R1ROlhau5D/lZwHsLc9OdS8uAJZmF3fWfPEn7JfNokEZO7HFWS7bwDt8Kwm/m0USIu8qa2w7fCnWavSC6EEEK8j1EQhASwXNJ/hrhfr8nLAbulUeNZIN7u/TI4b/6IbKK9kF92fH/zwXxaXITLs4/dKT8jv+1K89SYBMcCSWIW8SwQ75CfBeZGlTU1vQ+X4A4UlgL/epo6XdMMrPP+WNnBRUvnfmnffSHVldopzjWqqqzRTSztpgDKrH+3JVe6tVOH9W8Kvzzz1B1I8r/d88kUAi6qtYV+GR1vngXiJPkLV6Z0/1TbltFOOEZ43txAttLeTbj8y+2bj1I6+77IDF+FEn5ubjjQRC9AuOS4zTzYWiG7BFyaebyQFDZhwDWqrJT1Tvz+AUy8V3gPUSXdzjsQPLd2U9vBW+FOs/clF0Jo2dbVbVnaykPUTtwvc3sqXLf3n0wd2m1XWvjc2DXJtUvA5Uldnajmi2l/6miG56ja0nLNhD/zkg/dqfchudLBkgshtGLXnH2/Zo/AseAs7d2M/pUmuRAMToFTjBfthGN8CNdKQyB8FcqHnpi5WLdrTv7Np08mHyCqYMmVyV6WXEHvg3sOLozQppfu39qq+y5LLsgvTRmbDsmx5EqGX3bNeDmBx8mAh1GVkU2mWS7jI44FEqK0176ecdmH7hSWXB+C4NKTS02iDyJHVux9w1PBmB+mSy4EvePnzC/gX0FyCYevQvnQEzMr/OsnxuOiv/X0EQRLrj3BXpZcAo+5kHt2C+gvm6+buk4pDY98fPwODXnfTyOqZrm6X9/d1tp/P/IRzwIx0Xr17g2dboSmv1BImsHUsvDaMr84OdLdrr1C01e07d0jk4s8QijssQ3rVHXiaDIH7UgSC3DDeXtwQFUnElXIz4OkT3NWCnnfI0ObSnftukmj6ro+ky5NBGsUbBtC+SRX0Dd5tatdd5X+5qq2s2vkJx8f4hy3tAopSZRKFIYf7N8b1Y1lRKlEYbB5A5yDajlUQh5q6f/hh1vJ6USx7CKx/p6DBrqRG7ShTVL/xdRqKD4odNcnXaavTV2nFOrPADWiOSJR296kGRiu3O8qJ0varSsCA8CxQCK865/oVFpyQOxPcf99x5iQqYO+ieG2tv5ro5c1Ss312TWIEAq8sPR3a6+OMuPmy9rT9YcEN6yDvqlrGtV5g5k2XwafdzWXJDeMfzVh6GjTUaOmHmXXN7NcCCEYmL/T39V/lR4fN1/SqmSxUoO+ya9Usha1/mK3oq3f9hufaHPfdw+uaE4fLStro5/PZCRvcSyQEEfOAKC/bKav6U+3nL3BLsV3XfO5EEIIhTgnA3SXzKOXulpUholXkdbHshwk+vs/0bqBEfqGQXGkHkyuCk+JTP+BSaNQpwb9mr4BoFU11nck+aSQieIuNHD7wXDP6WMHy1rp+U2I4Jrz1pDu8rVR07kW5fBEdGfZ72SMA6o6EVEp1wwAYKAdb4VS3CDv+2mkq1N79Rv6qq696+qkL1iAV+Rl3f14NvHtDMmFAguPZ5bgNqc5CnptXyX1cczBhbOEIAHTPf91PH0clU1K88zK4kNj79C1cUojO9w2/iK2UifoDFnDVyqCRkZhr204ca2BdrxNvy5nX4gjZ0B/b59er1U116u+mvTl8u240w58d2dY88mxsopW+vlmtnvBhpMZ1CbiJxhzcGGB5J7cphYOdOvzlsEu7RWaGTNf1qrqGzJ2Y7KZWmjWz28gJBhMMgZA+JaXLeakj8IUdUHVNWQeN1/uv9j10f7U6ZPpoln6yC9OjnTI5Gq9/ryiFdh8wZxumbAzzwIxUacGQHfZPH5tQNmiuc6+zhUoog2bpDSfdhmujZsv9X9+9qOSrOIpqx7gWSAuPaIeALpL5vF/6ZWnzl6fXkpTC2lezTlorUJCEqREOWjzhFHQe/9iY5lIXNdpdrwVvptsiT0ouaLp8/pu+SEy7R68xoJjTdRsACEEPUzroXrTTGTtC/ofg5qDzWbXJkII+mxnZa2MJxYWS6TgZw4ihAIuqpGQmd2Z1oK/T/QelcVKQ4EZk+xobEM658OBkJrOUSl8c7ej/LBuagUihDadlEzaYV3MaE5qjYW3LaUx/NKErkb25Ww0QYSbNX0UzYPx29Ql+5WWVxBFdvQqov9GARd13uRcF2gD4lggIcVNBnY1dlWZzPwCIoTQH3aNpMrwyzuE0LtfDFUSjf0N533hTQ8f7zz0CZKQaKcyojNCCL22qg4QojPWlYygk2rhtMcmngVisrze8CTD1Pwba1d55cCUP4QQ3HRRsv1d1jfrHrqtmV6IGnzjCagZzAhU/NKETloVuRAhFPDQClG8Rrho7aiu1E36IUJow0Ud399x903YTTe3xbai4AY7WANYHoX801/UlLSaX24ghODSv89WfcIsbsbaXFYzNL3uGT9RLgPTq4LWJg712VcTbSipv+TgQqhAF9p4AqpbqV85hBBcZFpLklYWeRaIReJ6I8uFEEJhF1VLHDe7M7PosvtPdBSkPfbIXyHOcaleJAPTKzCbiSCKudDRIfaNh/mkXPr5NBfaYAerm77+NQAR2lxk2krq49UJPh+nWAkuPeyt+SjWLxiY/VIWS/LL7hXFkym5Uj7ZzjRP7WO+aZ5qurDAOJL7q9T/9YqHCIX9tnMl8TXjPM6QazEgh5FzXZs3ZMV9G751GBvjmQZZ7RbpbI2BXZ9nTlRJwWMu+71AOGIntza/qQUCHfTQzc20NzqKayw4KSC5sptaYNZnnSnJZOkmFIw5maNQXxUtHyH+Jd1Snpg+QqYOC/YRrkwDWUnz9ZebECF+ydZT1cosCs/osFC4jgcKyHtutpQ0Gh1vcwQKuPSwV1ofbVjkElE2F83uAzwLxKJDPY9WE30/VG9kI08+2b367ZRWQjaY5yMvWcAF+uRFuz+U5W6yxaW7PSi5IqtcIc5zH9SfTo25f9g11TGLbHrpVuKgwRFC0XzzknM2fxghhPwTmnJxg/l5ODrkjbFNSd7HKAixgG++cxirEl9D0QBaZXS8g1uVXIKVcg5DHVFtcoYStZAtjC99miXXWEzbkhvz7hdD1b5aai7+hk7YRdUSdQYHh9CyTV0hUlreQIQ2JrX7yei/oZvuNLvCmW2I/VlLxT71MnJxtE8pFkj6/3QWLYpyIj5GaQSnwQEyqfysFhaQXIKmfveLoaq02vQsaunwHFV7oIWZmzXJRI3grjNy01hlxx6kv/628QRUJl2YUmNkLGQm50bCpKSS8T41Ve9vBN87l4MIIcQ9Hbv3n3D4ublhX4na5kcIobDffqGc/Mg8H4wVmCgkq7WTXW7FqhKJm2k3LNCFkqYAggt0kzg6UaLVlyQcw8fIBbInc/tPhh6CL8yyUrKZ9sAsJvLx0U4lWp5uFuilm4jDBsd6htkFrcQ5DHUpDhOeo2r3RaR/YbO+MPJIru1M80zXyjnNU0wnOI4Vkbx+lGa9PM6QQ3LlMnL2a4sLp9BtlhH5fJtngViUPCuz3wtQPslVQPOEAl3IaaoWNYO7s8s8RCjMsXfuZb43nd3UGbM+x0xJJks3Q88EYk7qKGywg5UpNWZMnwxTe2cF+hieNzeQcddKbk82t8wariOP1jkDxR8sOJxSZi4Xze4D6VeFVqxnROQJ2vMup1en+AZcvN1pjC8lZN5NPFt7iNuzkgshxLFAEx2tzYUfH8dDVojzPpu2f0+pa6MxDr4wy0qJprg8TyoxZcizBd+Ai2pM3dWKtCRi+q1JLqFKXbUM/gAAGvhJREFUw3NUbQkhUVNMhLFEF1JIrrGYtiU1JuyiatPekvUxciISo8N+27kSkcryZnNjyqgBmlqRyvKGh56xzsQtNrcISJJW0E03H4iueMEXZtmBZlpoQSFy6xJebIhEh/JWQSfOL7kETB12UbVEiUR9JWpp5opaUiIG7ObSw15pKUEQBFEmVRqT3pqMkmm3pCoiY1GrpsaipVJqCSEB7OrShE5KEgRBEOJapeHePBeCbrOM2NcUX1FLt0Su9RsBl+NZICZEKutKoS4UsSvnnXlit1KRvieZLKmDWSRXTv/J7ALHAgkhOmNdWc9iIi7HPIKcd2babk18swArReyQUpqXkYsjkbSwWV8YeSTXdqZ5pmsVE4JyjqOA9QpxhjRyGjn7tUX2pRDfzlpXxr0AoXzmKqp5yYHu94neIyRBEAQpln5ssL4Q2tDPauqMEckWTIR2dwW6yWfGnHyjkDF9Mk29mdnHoNt8nCBaEy+UJMjvlkUHip+fpLtc/qwsIR/IuIpngZg4oLK+zuPVCfn1zkPrRpzrCGW9m2wtouxlyRXifvMs8xAhBN10L+NFKOibMLZUHlGZ/utHl88Tj3Ehh+Gg8IkjhQXfDadJJjQJIxp85yRX6JmpWlRAAmNyjcW0LakxIaepWuCWGXtSjO4tPpu8+LntrZOqrVBa3B76YtKTX8GSC/FvLKqS+i8ml/xLk0PNrf8SzEjIcetC0MO0lpOZrzFmdCrDtllNLdB9hBCC/Nra+uay68e7Nym9qq6crDE6NlICZ+aFSVVkjkWEd2tv1zeXf/3ReosCqjrxvhrDf/9fh+FgloNhtiy5StQ2f4EuxL+aMJyslLabLD+5ll+kLD0WJrly+0/2SMplMZFQpyLZJC1Sqeqy5cdflz3jeURDcgkCdvAycnHk+fgDS65Cp3lu18oXggqXXIU7Qxo5jZz92iL7EpdcOewmUFeWewFC+cxVVPOSl/P9b9c3ll2T1ptXgapeTDYYHBkvWGc3dYY/ZwsmaWTrpkDM2Ui5MLP83NMn0srMPvochsMFz+jCJFfJOZs/S6DIbFguF83uA8KSq0JtW87j1ZEEmMpBdt1JqW5Edhiz3E22yF6WXIn/f2P5rH9qbdNFycjy2JE5sRi3OvPtA/ahpjq2MhwhmgNbWPCFG1P9+1PWYDecJhmxv39qo/CNxcSaXPZK/7BrqlNXYlNzdaOkbCwW0bZkP9uY1O4vSV6KDzlN1YlUqmWbukL0z1PKCw/8KOCiGkWntANnzEn7eoVLrnXHJaNljrVZblseOJf5bI9+f9g11bHl3OCS49+3rU88XChyKFd5mcLsEny826LkQv4JTXlK91Fg4fHM/BOgSsjKzWemmtp0Z8uwW1IVYb/9Qnnq7kDA/XTm90nQEF+mhpvOkRoxYFcmNOUl0S2YRAPiaddFSi6/TV0SWQUsxIU2XNQ/SZGC9kR6Ghmsn1cd9x54gwVKrtz+I7ixKGplFmEWEy3zAp3adFKyfaKWm56Iz0Rb4nV8a/cmr1TxLFBEd0OSSng7pU3d1Ag9M1WX7NdObhT6oFUYW5BchU7zlI3FokNQoZKrQGdI2lJIkMvIOTYWi+oLdJtlRD7fTq8LZr8XeMJJVfCsQRG5KmljsZjmJQIdz37ekNgEWHeajmb4VC5TZ8z6HDMlYcms3bw3ejEz5qS0JrObyV0TNvXvTzL7+POK/UJ5LKMgtZ1bkFzLNnVFzkCxlO5y2d0slw+kXxXZ2GljFjfzeHUkCU/0j/MG3Zn4do3w3WSL5wP+CSQX5Fhj/UeUa33JcppMfLrGgsOEGLBeRgGm/9883VpWk0jTe/Xt2YuTXOHBl/dY2uOpfAj6J3WV1e0WD49QHsmVyK9csV/QRxKVslcKeQ+jLDucyA2MtTOVNCFVcNtS/Cy4aOmMZfwhBFemdIfL2y2LUUkU9tvOlcSSPyILp8mJO8VIrtfWjnbq1/Qdugzg5jzdWibtsr70fG/68snvG6+/P3fuxkP6fL1Mdydjgy/B1iRX5ECKePdR8BWjuzjlYUFNJXgSneXwhfnoGUt6FmSq3RD3KyVPpM/zbkZZWZnISF1gzhqnVn8G4sOAXYuW6jYfVVrewI15uq0skQIfacBKZheyWrtmxLkZqSa0YtNUtVx3BWBhLrRoUZQn/HzjCagUicGUl9EAlitUcuX0H54FYqI21oaQf2qgMi6aBU3EhQXm0ZJFQcabGdlclgDWySgMsa3h42Z3EK3bL5yPpMSlPIrwi5b2eP5vpA3lnZbFeLZcllkPf7f3N0uVo64Czx3diuQqcJqnrUUVGYIKlVw5nUEofCWRy8i5lh/y9iXVr8ry+nZGak72ewHLJ15lgOv2wfORJKTkEoowdbLkAuLKQTa6KB50m5Wxt47i5DK1wKzPOlPiZO+mFmgFYk6uUUCBWaqpLDF9hEy9KtjHzed066GkVPTsMzpjpHgWiImjsVeyEFy531WlzBkoQqkuBwO/ft0knD6f0wd4FohLakzPoruh8I2tS9ZidgYinc3h1Qgh+Mqi3E+IVEm3BsG7yQpCodWpL2TST8fnU1cYc7JXJFfYaxsG/erGA+k/+KNqlohJgjxtWQoh/jcbkEub+66Nj5lNXzIT3wFZwym1/qaLQyjEub7VNh9t6b4I9H2a/nEnt+G1XelTSEniQKN6kHa4HfSguvEAQUoVfVds3ozMR/7VhOF0s7Jbr+9WNp+Ovt8b9tiGLygkpYS4XqUFw7bM3xoJrU5faq5X9vV1dl13BlAwX6Uhbv7eUGtjS/dFoO1q133rStuGE6wxd9vKGtVg7OnsD8N9CglJljV2xt73DvomhpXNbRr9RY1SnnqmBkL+CU31Z/ZIkA0/Nx89GcliRmklG21ePqUix+JTGnQ2lpGkRNE3bPOGNxeZNhERp6SisfemU/Ad2hA3/4Op/VhFuUw1APSaU9Lyf0ZTNQPPHz7OTC9GYa8tqVOPZxO2Ndm8/jymhv5561Cr7ES3Xq9Vd+puz3GQY8HJTjCoG6Lo8WvG3j5T7PSEFKB/3mpQtnQarn1t7O0z9rWWEqRY0mqYWkEIQe6FdUgpazmnB33qdv1t1xrkWVDfAYb0Q9TouNnY2/NV9LADuOa6rWuuP9GtB/q+3v5bzziY7B790WFKs3Y0L7Wlm/6Opm7csf94nx7uN36f5Cf5XAhB3mcDTUeatV+Pj5tNxvGJu0BWd1KtG/8f1/0kez5ddIyB6CkhF4R8O6v/8CwQE3Wd+n7dyA3adK5FOWhxJUZcwETJfdTHzxQI+myDTVK59trYuHnEyNy/C47XnVLrbs4FEELwj2njiXpFT197z3UXJ2QlyPseGZRypeaiXtPWHD1jIt8EDC8wJw6SkberchHmHGOx96YJQlyv0uoB+CoWN7Y9zRMllNepPgPDNm+4gGkeM13qvEgbx+f/SWnbajZncAVgRvgSmAxCRk40QFx3WpswSxKCfUEodgDKp3rdwAh9w9R1Sgnu5Pbt5M7qI6dpIJTzXoDg6mNj8zFFX29716grAJNKUBsLjqhpgc798xf1nQNDuiGKvmU29vWYJnzpK/rZ5t3/vvvdSPqszzZT0s2YpZuzNuGYk9Yg7oV1SNXS8cW1a8beHtB36iBBlEmajVP+sKCpeVa4j5Cbu61tqW85pwcDfRpwyyk8ozPtzLOD0u4bd+l/Xb/zaPI+bey/nCdQxH1AebLD8PU1Y1+P8bNTpQQhljQbptL3cXP4AM8C6Xn67k3q+h375A+0ERgtc0m5d8JeHSPst39W3XU/5TAjgbsJQmjTd/fsIXHZP4wOoZwYYfaK5ML8OQmtToKGtn/9Ej01CvLLv9pHz0mr4o9K2eFZUHaC9rxDcO3ZSGe/8OERmL2I0EIdBlMI+JhfzF+Lpe/PjzzDkgvzfgjOm1tr4+u3CCGE4Iq1/eAFu+BhEMnwLBCTYsnRRkmZKHroC+bPAZZcmK2CJRfmr0Roxfr557Ed3kLAkguzPfjFKfNAV1ffEDXKjJtN/Rq15tKdzBVyAfwOQwNJkOL6AZvgD1pj9iJpe2p4bRJTMGk7d3n2djGYvQ5c/WnwwvcCOTHZwZILg8FgMBgMpjjgH54FwUORsoMlFwaDwWAwGMyugyUXBoPBYDAYzK6DJRcGg8FgMBjMroMlFwaDwWAwGMyugyUXBoPBYDAYzK7zl5JcYTfzaaNEXMwvUIbdTEddBbkjP1oJ11wWw9ku3WUzbTb06ZhfhU5z/uuxOg3qybJPGA8+6OEvQfgl0yGrILP8BvlOAznHSFN72hFfkJu53qXSmG7Qpl5Vz5izqHeCuMdAuq/sxHjmafoYDAbzYflLSS6Ecv/wOEIIIbg083ghRQzlvaQguFlT8/7oj9AFXFQTKTpjXSnu9VGEEFyefexe315LdpeMFnKuUVVljW5iCR+M+eckc0a8j/Mqw9z/b+/8fto40z0+f4BvuOQCKZKFxAVSFEW5AHFhLkCJkOwolYVQIguiVra1jQznCDupMETFJsIvahkriWkWq8JKmknASnbZVchR3Qa3gijMSY2CN3VzoLFPcBooBMtYdhj7fc/FjO0xnvGPbDjL7j6fO4Rn5pnneWaer9/38fsGppHVqFUdVexbVXXvF6an3ShsYMe9me07avCGZbdL5zaXn66JN0xMPr9taGsb+v49d50FAAA4MP79JNeu3/pxyQ1i3490gD5Wnz0JTq7+l/vW0mbVL3286x/5+O8fbztADr+FQJUUPxH/j0uEFy1kj98FnM38nqo8G7N6RQcdKN4VmmfLb70I6+ADAPBPwb+Z5OJ+e+I8W1Ny8/MDuW5FYG5j0dl54gNMcR4Uh99CoEokn4h/pORKBF0aSolYTvyJ2nb3c6l5wtTGk2udNbD1EAAA/xwcJsmFd4J3x+3Xp267LnXnN/dOrXkvdhyvpZQj3wam7fYJhvlSr+pCi7khJMxFF9zW/7DQUzOeayNfXDxXKyN9EkHvmM3UoaSO66wIofym9CxSKs9N3mfsoxPMLVp/So0WtnMDVNyrebrPaHffdg0aLN+sSLWVZCK+q6Omjpqa4zqL1XRepzunVdVTQiHJ2T/85+9uWC+cqa83Mqu7ydW/jFhGJpmZGc81m0lzAj2JBe+NCSf5DCEk3nB+P9z6wsRAr+0Gw9yw9Q5MLKxz+aa0ulPmKyPWYQf63KTVmiZ+FG13n4rOXzUaR6ZuX7carDdXdrC0bQlCCI4/u4sc1z03XZZPDPSjKIcJwQkJC7NnEFdNKfNyHUJKx8MAg+wTtxjaqFJ/ubgtN/eKueiPE5Z+2+Q3zKS91zK5IN4UiFtfmOjT6MwOx2f6HpTdLwhz0R8nTF0684hjwNgz8m2USxaat7VI96iUCqGi50wavffd1cELHx2r72FW9+Krs2MW2w3GO+25bjOpTyO2OA5lczIVXZi09NonmW8mbf2WgiiI86bYJ5+qDTdXtl5+5xwZn2KmrNpm48xqbvfJ0o4tuAssFe4i5J4IXnKdm3ggFSmp3HiP+Gbvab/k2vJbm4okF1Vn9RdNt8eCXueoqaOGatJZRxGimcDbfY1o2YdC5fj2R+HpNnQaPMtb6987h8anZtxWzUnjzIvsDqGYiz6ijSb71E2X1WS5uRzHhJDdCvIBAACgIg6P5MIJdqyl8+ufk5iQvXWvsVb91Uq2RYNjkVLRoKafxDEhJBlyaymNZw0TQgje+H6oVW1f3OL/4sJ3umtKjDZJfX3nWKSkqNYv2XiaEJIJudups561FCGE4PW5vpYm+0IME0ISIffZxr4HbySnCwtHufYVEo5FSkV92/jSbnjmfIMGPXnCdBmZyF7uxtv4ElPJUBl+PT90RuNaFppvkssuzZmh+ddYOLzmxOAjXi/iOOtUN7ahxzFMCOHezFkamkYXY2lC8F7IrWm0zL3JXlNs29I2ITss+qjTvZIkhOCwt+eEOnc5KQsLbraEeSTOIpVC2Umz25gQknnubq/XeF5IuhNvfD/Uds61wpc3nFz5SpNrF8NbS0hTK+yEzW34Bpt7vOuY4Nhj1HasyxPaI4TgqO+ipscbxvtjwUW9elFF5006M86+CXs/bWj94smzW11dTESwaYdFH8uVWPmc5Dbm7W2aXPbGV1zn5FuLin2iPNZ88d6rFCGExHzm2iarf6syx+bvYimekgu3pAFFA1pxFqkoSo0kIiWfG9XEt8CNBZIr4tUpiyWX3JCb1AbbhXfEsUhZo1Q780+3orHZ/KdXHCYkE/Ndqq0b8u9iQgh+86Cv4aTwJtkLujWtfXPrmTBTYT4AAACU5fBIrkzMf7lBcc6zmiKE4AjTSZ2kA8I3W45FSkrrDvHvdnHV3GHRSarFFcx9ly6jWuQkl2jmIurVUSrExoW2EkrjCiYEE0PudoVBehajrOQSnYekn7laGrXor8HNFCGExJ9OP3yZKW88yZqUcwURin2zM/AOFx2eWvOcpRTnmfA78u4nurmuxfVM8FPmubv9aHdekYhsI4SQ3/3WFsVpz2qGELIXYXqoY3QgLete0c2WNI93frs7JDg64tUpxbVVRDxAd4g+yRt8pJn+6R0hmVXPacVxs2+z0NTUquecovaSL5YhhJDYvLVBedrzS6YCySXOn3TQ1VLThR6sbHKYkEyc/ctDmV9iyubku5/o5iPiibBMyN1OyXUjSfik1uyL5a/Be7sCx4qfAvlwSxsgKbmkIyWfG1XEd58bD1py7Xu6c8kjPjweoDtEPkyG3FpFtzeyUmk+AAAAlOXwSC4BHI8sL/nn3GaVoHsIKVE1M8/d7bUFr+P3lFyiQ/KSKxlyaymq3eye9vIUWkXkTyIlucSFgduYt7cqKIqiKGW7gX64ys9XlpdcvEkFp4p69RRfjIsO51ikpI6a5n7LhNztVK3KfEO4Ee8Ns6qWd6FU0eJJxyPPlvx/dZvb8yWwjOQqad5+58uX5OKw8pW43R3KpNY8ZymqJztGmAW/8GjqqM7cgISkeURacokvhF/PD51SUBRFKZStf6DnXsRlRmnkTpsJudv3rTkS9eoouW6kkj7Je7sqx5IS4S5nQAVWESKdG5XHV9aNhJBNn/l4seTKy9AyhxeZIft0Fx7Op5zK7BY8Ni3c2l6l+QAAAFCWwyO5MBd9RHe3tpquz/7w82Z4RvrNSEhB1Uw/c7XUHJjkSgRdGkpajhRRneR6t/N2d2/z5x/m7rqRqUN5pI3+70R544mUSXzp1biCiRKSKx10tcisPSZVtFLReWd30ymT608/hKJhsUYpI7lKmld5SS4OKy+5WlzB9G6APikRlHSAPqaQHAupTnJxsbe7ic3QwtydSWRSKxWn6YBkrZc9rYSro14dVZMfcyqgQslVlWOlbJClWsklnxsfRnIlgi4NdcS+mMr1xS3ajsh578NJLomU4z9RaT4AAACU5dBIrr2gW3OkpvuOsACP8GaMBO77I5kSVfPtok31fhOLHEvr+Y/JvpQzMf/lhoJJN5xce7q8+X4Ti+IGcxadzs2/4L3gRFt+xIk/SZxFVimphxOLI40FJiWCLg3VOLKYkJlYrDF61/dIbN7aUFtQt5K/Pl7eKGp1IkLrj6Khm/kfTuzt7eX734UzUhaKJxZLmVdFSS4Ka/qZq6W20baQEIIinqfjg/Lab23JTrTx7K49XtnE+24wteY5W0JycewXp/PDUbtB1xk50SCbk4kFW2OBq9NBVwulsi2+lTpNhZKrKseSEuEuYUD+iZC1qmRufBjJxd9pfhQTR5hOWe+JDudYpOcv/V6Si/zut7YUpBzZXXu88vpJpfkAAABQlkMjuTZm9YpcKcQJdqyJUiE26NXTLFdCcmFufbY31/RKcPLnrztLtc/n2pzxrn/sM76lo8RLmVvzGpqy7fOEcL96LzoX41ITRNVKLuVJxO7wf+E1zxnD7Bss7jje8l92CG1J+y8Unu3NdfQTHFuwN7X0zoaz2qem8F8nuj3BJCGEJMNeU73QT00ISb3y2q8sbknYRtIbsxcU+bK0w6KTlBKxEa8esZyUhQVnKGFeFSV5X1jTscXRpob+2fUUIfxSmSdyvxLIBiW9t8r01LcN+jeEH1K8un/xykKcEBz1diuyJZwLeTqVJSUXUjaNsQn+1Kk1j8EgrMkpFXDpnEytz/Y35FyNtxbtJxuENXKLqVByVeVYUiLcRUg9EbJWlcyNDyO5+Pi29gidZ3vr3j80Cr/BlCD/Y5dd/+XP+MnH95NcmAt7DfX5NwmfP9vS+cBt+JGmtfd2CFrpAQCogkMjuUgq6hvrbNXZpqZnPBNO77cP0NmOT8z2Oz+FfDeG9a0K6qjWPMYE1gLMmFl7lFK06odv+CIpQtLx1Yfjho/76K+nnMODzs8/qaMopaqLXpScAMDbj51dH+mHh3ott0NJnIn4rg7rVQpFvbYfMU/XA9PIrK2n6lT6y1d94QwhOP5ibtyg6b7kQMPmXse9kMSP7QtP8nilwODfIvk/R4SlHzgWqfvQuGPcfXvG4xwa/GN2RYz09tK1LrVheLjfcjMou18Q92qevtBlGHA4BgxdF+j5V6IKXXeq3263TzDMNUv3BTT7PN96gmOrc+M9mvMDDofN3G+/9zyOUxK2EUK4//UhXWvX8NTMtMf1lXf+z0hz+hOz404oXmSh+AwuXyQla14m7Lt6Wa+qo+q1ZjQdWH/KoH5tvUKh0g9f9UUktCXmoo9og85gveKwGrvyi4YQQgiOP79n61Z3X3Kg0WEruhvkg5KOh+7bus50D1xBjmHryIywUQzeCTKXdMYxz4zn+sh1t6OTomqPd1z0vgjlTXLQTOAtIYRjv1T3j47bx93MXY9zeNA1L7W+g/iuJXMyFZ2/augyWh1XrAZdfiWF/XlTyicvX4qTik+bco7N3oVMuKWzad8TUSZSKZnc+NtKlfHNxAPTCF0Z0DUrqIYO0+cI/VHIH4K5jaWbg/9pdd1iXIMGy9TShnzHOv59yXlerR8c7h28GYoXGO/0/fpriaf7l5cFQXwrvEl6tN0DV5DN0mu/H4qnZfIhFfZ+Wq9Qo6VtWcMAAACKODySC/i7+TA7FwEAAAAA8OEByfUvBEguAAAAADisgOT6F6FwclN+5XoAAAAAAP4RgOQCAAAAAAA4cEByAQAAAAAAHDgguQAAAAAAAA4ckFwAAAAAAAAHDkguAAAAAACAAwckFwAAAAAAwIEDkgsAAAAAAODAAckFAAAAAABw4PwfP7G/h2BSoLsAAAAASUVORK5CYII=" alt="" />

输出

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAbsAAAAmCAIAAADShKJgAAAPhElEQVR4nO2d308T29rH5w+Ym172wsRk0oQLEmOIFxDyhl5ANCSt0RDC0ZBCtmlJtinsHYoaK+TQQugQpQ3S6rY5hwY3o3Si56AR31gVtqG+MsdTgg27KmW3W3oUhE3foW8rQ9d6L6Y/6fQXgj+263NHmVnzrGc9z3fWetYqYBCBQCAQhYF9bgMQCATiqwEpJgKBQBRKDsWM+B0/kbrTtQSOiWrVfWQM3Q91ZWIMU9IB7tOZmYWol26rLcMxopH2f25bvlWir+k2eRmOYY104HPbsisAdu7GmVadfYys3Ycftnq2PqaxiJc+U/vF5Mt22KekdL+k2e6LFnvn2gwpwyXf077IXtjFk5HdUXbmohQ/2EwvFm3v7pF3jumnGwmMIJnU4eZeUwo5ybB7aFfhcAxJfMOKCZZnny6GP2lr3Mrsc28YpHzCMmTVn0UxIwu2k3g95QfciuvujYcLH+9bjiGJT62YmWMkRHh+VFVd3floOd+FGbCeUXV5tX5yeY87lZbdIOwZVZXLOyf/U7S9u8eOFBNGgw79DxNv986sIvjGFXNjSvvd7klVQa2tTmnPpOf/n0kxd78vn0MxM8fo6+TLy+4iFROwvy++5yAE3p9/tL36jEqf5Mvz6aeDe/vMdEK0W+ldUGuR5WeX60VKpJiF88kVU3CMvk6+vOwuUjE5hlTSAQgh937x9//dDDyxdLTrrv1MXdO3dlybDkRgsvpQ1ffPO4Pa749Lypqol5uCbXNvJo1tLXrrqPmCquPnF+wWhBCCdffNAf3Q8Kj5rEI1OBlIKZRwS9OWNnmjxmA4p2wiHfyvOIYkiJPXblP6Pgt13ag8IiOn17JqOeACj42KIzL1X0l9l55yvZnsbaH924txQaexoYrAUubWmabGbyH6bj0cvHD6+EFJE7Ww6qL0p2sJHJPUdz3wRWGUdV2pl4gIqbL3Qe5iEeByOZMPmmjQaWqokmBYFcmwMOSm+3XqWgIra9SSJEmOudho/Pp9RzS9PdpuA/lXdV2d2vIkwIGMmtqq09hUReCxTgq1lmFk0E2b+tS1Iqy8UdtHkkbK9QeEMKYyJy33KFJvuU4ZW6pkl5xrifpfJDA52NLSMzw6pFVpR16sCw0OCC/c6enouUbZ7bbLOrX8EMl8yNH3RF+IngeuMb3eQlGXVLJW24u3Sw8tnQPD9mGtvKLNvhDK6m9uadpyvlV3laKu6lrPW6aXOAhh1OcY1CedQLkyCk/F2glhTDFrNSSpH7LZh/tUCu0I81ZQzBK5Y3jwJBbPqnqVbXZ16ZGpc2DYbtXKD7fYX8WzaYt106T+sm30codCbZx8w2UbI8FYjaTGfJR13dSrZQSG4dKLM2w06rM3S3C8rL794gP/9kDYFkgCY6GsaiCdK9myELBzN0nDkG3E3HFKZXwc4LJPvVIUMz0X8j4UcIHHxha1fnjErFV3jMyyuzS/K0YxAeu7r5fGX79g+VFn9UnzCz4sQPjFFXmirsExJCEiqo3MxgLdXCElnwqUPMHSRFtluX46CCCEIY/1RGnbvXcAhJj+yvq//RoGEG4u0S1i2ZUXfDkGrM6QcnHDyOtNACG37LhQ0UQvgVg8YtJLDLsFIYx6rDXYCZtXuCANlh91SssU1GsOQgi3gs7+aqIk/gbbNrnw041ETDGFTY3dghPHBph3Pvr7EunFGTYKIesy1mLVFvcmP0SrU136idU82wf5nJnymg3QjclsFJoQcQxJiA5deMy/NgDLmGSl1eTTIIj/Mjnf4QK0MuW1UND0SmjGxDJkFYbJSGYNQAij89YaiTy2BOHeTXSUlPc5g1sQgk2PVV7aMfEuQy6Al2poofy8FIAQ01/NG5Wr75BjSAIvkRmfsQBCGPZY6/CDhzW3FjkIIVxxaMr2aac2hN39n8nOY3LzbKxGGZ41y4/Fq2M5nbBjOzHphSm+Wgg43w2FuM7k+kM4hfnckZmS8YyXVmj+8YYDEEaDjrPifZ1TGwBCCEPPyMom668shBAs0U3i+nj8ZB2jzFhN6yxYnSHlIj7jQs/IZrOLzRq32x6RORaY3OYV7uE6Qx6vt74IQwiBj246JEsMhPBjUhyb/mOOh4J399pKDuudqwBCuOm2yqVtE0u7opmFKWZsr7z3fGMFHvMv6zLWYjVWT+L9E5231uyvMP77Q6wrokrzXHadAB9cpgpMbnbHZgFRj7UGV9GBSHCqqwQ/aVuIQAiBn6rHDhtdGxDC6ILtKF6mcaxACCF8P6WtxI/aFqL8s8Q11vmYIenBms46Qx7GEgEHIYw4dfuJfIqZzVQudkul2Z3ez6jHWoPVGvkJSvBhV+909qkOT15nFquYqQuZiNd2AsObKV+8sT1SzKT9KS+bD/82VuxLRkJ03lpzQEH7tsfu1py5srSOvOteiUAIIft87P5v0Tx95y2ps3rCyb6IzzqC0Xx94Qc0cSOMJVuFyfUB5HHCzu1M9djbCfUBvIHK8ELi6m3xnAj79KaCk9oS4qjtZRRCCBapeuKg0bUl/ESYJVa3dxawjEl2QDb04LGp70aOGbqgYm4bi+2bHwlSkhdu+qkmLGG38GNyKqbwQ1mXsTals2GPtQ5X0IHdkMwiV+WJnYHovLVGnB5YfrqRiKVN/upD2GOtw7AajXWM5rFqqlKCDLD+2ZmpieSHEa/tBIY1xV/vKeQM1jQybU67N5ti5jA1S3YBL9UgKdVNhyD3bpw0Za7t8hqWw5lFKyYfWAfUE2/hniqm0PQ86rHWYOIqzdWY6+irmiqxUCpxy5N6KY5hGIYRNSrj/QV+dlOEEhXeF35AU7vABWglFsu93E74eDvjtol+FF55FNcUnyrPpiasqY4tYIyyfQjCL67IcHG1eU64kpZq5nbFzDYWgmyx/rmZqbtWTU2uK/MrptBD+YSq0lhjUTeW5ynFUKRiRn0Pb8+ykH/ZigSSnNf1/IoZcpvlQofU+DqjVKoeGv/l1xWfPR4uGy7jYeFDbYUrZqbNBSlmNlMzb0m2+25cLRKfdawv0uf+Hl+eZ6coZ35VirnlNlcWdFr2w/ofG5srv/4ycdNKqmuJ/dXGf4Uy+7I7ipk5oLxi8suI3E74eDvjtombNT+UY0niFxTeFPdm0vhdubTVPP7Es/IqOa//OMXklu5oyglR9aWZYK5S0kcoZiQwaVKUH1Gb//GLJ+DLra07U0yBhNo1dna6CEL4h1OXPsnfmjNXikt10wIBJEA0ONVVkrLUhRCEvc9nAy6rfL9IccPHF4Nj4eJ33X4096irJLHUTVy/whWhmLzNqavyHIoJXtnk+wiS4bKZusLlyC6wOtEqLj1l6Dk38rKA07ZFOBN4bXIhxeQYo5K/RnBVLmqhlzbh9iCLeG0nBFUm2VoGyRYS24A5SsDBSW2JOK0+E158Optx/o9jyKOJRT3YdFuq+ftz9X3HiglCzp7StAENuc1yrLTHGcq3Kt8FOyFfYxXxVXhh/xaimCGP9S+4SEn5+DUp7/P/WXPdf+iPFDBGWbzEeW91/TTzfp5qqpDqf8m+g7pjxQSbHqscL4nvJcSvXJu9/VBoa3RnignfT2kr00sQG96nL7JuRRXDjhUTcEvjrYnaKtwKOvvKS9rHl5L713lmFpyXVpXHt1Mg5BbpMybn69tKPPE0EGL6y7EqknHTSiPzfy+ppkOJDY3Y9Wy0GMXkba6I14C3gs6+8uQMiAvQKrye8gMIIeAWRuoTlgiamlk4T+P9lLYyUT2EcGvNeUku/SHL7m1OZwIfrSirpxYBhBCGF2wKPNnBRLUbbEz1n+OrXRxDEqKEtSA4rS8/pLC5+cQCAVqBx4sbnMdWnzq4Qq1lkNxb25jqOucIQphLMWHYR6slsZ0fCGHkDa3vda5ub5RjSOIwyazH3OG1HVONvwO5+/4R82XON95ame6iytZxH5f/xh3beczsju1CgdUHHRUqmydLraZQxVwaV5Yk+xt6RpaLCNLpp7UkwxYwRkJeAutzlh+7pt4DfntKlNitymLmThRza3n8dIpz1hnyMEaQjJ9WCl6+Q8UEnI9WSRIJBbg3t8/0TrMQguXHPfJa1ej8jr+YkO9bkob2OgmO4RWN53szTpwALvDYqGpUaXsN2paG+EmgqN8x2K2swnFJXbtB+JBK/H721cSASq44ayC7Na2GW551ACMBR3+9tFE3PGa3WUz0g3vkidpTGv2N+TCEgJ2/pVPIFGcNZF+3lrzpXt9KeRZJPV9yjZGaOgm2r0rZNegQPM2zxS7cH1Cd6jBfpyx9ettg+/6UqQE7R7U1twwM222XeyxXDcf3Y3hZbRvtjQqZGvU5BruUVfswSZ3GkDhnk+xcyNlzkE8nCCHcDNw7c4iQ/JcpW41b2Jkxm91UW2PrgI2yDfVbrPrjGIaXydvo11EIwdpTU8NxZXdna8eoJ5zYDt93pF2v11so6nKH4jQ5Pp88WgHW3dTZxpZ+m9021DNkNdRjmLis9gztjUDB1gQsfT9japYpL3S3XhjxsDDVD+SYa+k5RbbXSXC8Stk96PBHIQTBhYmBJnnzeYNBp2nX35oXOOfBMaSsjRwwDFhH7TZT54Wf4t3P1nf3ouNqt1KKYwfqNP2Uy+ui+jV1BzBcquy+6vjtZZpJghHIvZk0nm5QnTcYzqsaTseO5iT6QsjUOlIghIq283UUQo7pl56/fo/6+8idx9MPKFPP0LhH8IhVWu5kxPPL39K6vMYFHGT9kQbd3+x2m9lkn7xHymu/0+jtnjDINUaJWE390HR38r8H2+sO4ZjkL9RC/FQcjhEyte6qw7/t5EnEn7TE7PAH/TnGYvu9EHK/O8hGaUP3sH3MZr5CT/6TlB89pTHcyHiFpHvDtZ78UWNyvMwVAP5ILNOb6hTne0ldR6v+toc/e+CzN0v2C5/eKYxv+y9x7OH5WBBymrq2TdOW756z5Dg/sEt8eYd+EYg/DUgxd1VcuCXnddsdzzoA/vFzV5hQ6kxia3Xi4sX4gm4PQYqJQOwZ365ibpvz786fFQm7bYqyEmXvkJ6k0r/cAtae9Hfd3ZUTYTnYk04hEIg4365ifmLAe99i9m9QIBCIrwKkmAgEAlEoSDERCASiUJBiIhAIRKEgxUQgEIhCQYqJQCAQhYIUE4FAIAoFKSYCgUAUClJMBAKBKBSkmAgEAlEoSDERCASiUJBiIhAIRKEgxUQgEIhCQYqJQCAQhYIUE4FAIAoFKSYCgUAUClJMBAKBKBSkmAgEAlEoSDERCASiUPIpJvh94swRAsuGuKx5zJv13+t+gUS81CkCwzDiFOXN+L+gCAQCkZP/B9RAR2phpVFWAAAAAElFTkSuQmCC" alt="" />

样例输入

1
3 4 4
Q 1 1 1 1
Q 1 1 3 2
M 1 1 3
Q 1 1 3 4

样例输出

2
21
55

提示

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAgYAAACDCAIAAAB5v0S1AAAd2UlEQVR4nO3d308T+f4/8PcfMDe9+3BBQtKQcGG+xhAvIOYELuCjIaHGE0JYTQNmP6HkaIprKGqskKWFwBi1jWt114nHBtdxZeJ+Tj0f6/laV+qGeqS7WyKNVhc87Ud6BLZIMzTUTvt+fy5mkAJt6U+o+npc7Y9h+p5f7+fM+8cMIgAAAAAhhBC03QUAAABQLCASAAAASCASAAAASCASAAAASCASAAAASCASAAAASCASAAAASCASAAAASCASAAAASCASAAAASCASAAAASCASAAAASCASAAAASCASAAAASCASwGdD8Dv/MTGPt7sYABSx1JEQ9tm+o3VHG+QUoqqVpwdo1sVvUcFyEPudO6aopBBScv78rniaO9ZQSSG5kvPldcUp8U/o2rLywyPeWOrlFsbpRqr8COcNZ/tL4WnuRENlCULtnF/IdiX5k+6Gp0mYtXZXyGlnRltWgHMp5VkUnuZONdWUF/YQpLNj8aL7Vo9Kd/Nv9AFENTOe5UIVBhSZdJ4SfJxSjjK9lrYZ76Rr8nAZ47mJJ6/XXA2Ck5ZvbSQsP7+pqqvr+Wluk9tb3nNTXVWnH53L6TgJTlpe+EjA85NPppc2WSjdDU/vF4Nj+ipZVlVtns6leCnPojwfgo3ncBo7NjZl3k+1sb4Inv/tzq1H08vwbPW5gEhIacmu/XLtSrY+ErbWlkQCXrL3f7ml+5CfvHyi8+g+hA6apzN9ivrII2HjOZyGrbkzAEUIIiE54e1T40GZssgjITzvee7jo/laXeHrAizMOYzNu7dwH+LI7zeODDx6MdKOUA3tzLTt82OOhITncDp/B5Hwuco4ElZaQmuGHvzM6gcvszcM7fsa6bGFxE+WS1OWs926b1nutvmSTt24X7og8aL7hwv6S9dvmk62qi6O+sUbt5W2bHn/A9dtvf4yy55XNXaaJ9/OPLzcc+H6yHWtovrYyFQorhil+zQD/dq+IfprdVOT+vLPfkEsx7rLGAv+R4YOtf76sEmr7h6e4Dd9Dg65ubM6dYMcVSq1NE3Tt118jBDpYj509cfE2y68GTUc69AzN01nVN3fTyatqcP+savdnfqr7PdXdV3dUrE/bH7f3x5+qz16oLy8g305sb4tGy+62TPt3RfNppOt7Zo++ltGqyjXWJ7GdwOstIDLh+67WFp/+QZr6KhpPO9YWClP4v2/sn1J6oIEh17VrDJPBGZ+MvZcuD7CaBV7O0ZeRaTFo7ybo/XfmG9+092qNoy+EQghBIfcd84OqhtkskrlKZqmadbFb77hMd71g17dKEeIqj03zsdi3pHD5RRV2dx17oFv054G7LMcH7IFhLBDX4Z2qq1vky65/MrSf1p39SY3Yr6kO9q4WzzneSddgw5dvpdwT6Y+lNKeDDgMbTVyavW+an0khP2O61r1KYOZNV+iz3W3lCStjjO5oBKew+t7Rzau8A+f7btBdYMMVSm1gzTNjo7e1Ksb5Ygqbxp44AsT8s5lUpaj8tr2cw984Zh35HB5WS395CPoZQRpyOopQXDScpm80ejko4SQmIepT/I8jr1sSwvrk2rMRSf9Je3kCcEh59k9zddeLGNCIjNcR0njlcmVxkrBScupikbDUx4TQpY9TBO1a6/mzmuBEELmbZrKUq19Ka4Yu888EmtkzDuNjTvq6CdBTNZFAp69d6xir94RwISQiJtR1B6zzqTROJro9lBw0nKEas8n2HY8Yz22p0o/FsSEkJCHObjj2L3ZBD8jzI3q6xQfNpmfNB360LArOGk5VV53YXzJO3K4QkGPL6wtRixo762oNrreY0J4l6GxQjsa5P/3uY/H62tz3knXUPJmg3MBE0Jiz5n6coX5lbirNtn/KW4PNx56ake15r/fCJiQWNB2sqS0x76ECSEk9JTe08a84AkheIZrK2k2TfJxK1l/j7zZhhOCA+O0QiYWNfSUPmxypfVsFA3Y9Ec4LyYk6jLsSjU04L2X7WhhX0s7IvSUrju7GgmokU6wJzc7lKt7UvBz7UkiQZgb1ddWDzqC4uYse9l2WZJDkPkFlfARZ/U/JlnhhtPg/W+G6rI60zMp75fsvV3WgHgyzT3qVzSobj6HDuhPQ9aRUFLPPJfuz/ycMsnzeNRt2iNroe9NzguYkBjvvHvfG5bqNeqQeSpMCME+thntNbji6nnUtDLCQfBz7ajkpC0o/tTa83vDrda0+SCiDrPe92uX5F2GBrTH5JYqkGUP00S1cv7NMyFZJCTcdvzeZaxGCpM7JP6fmIepp1QJLuz3vxmqy1bXIOVKg8H14VJcXcmGYsT/89paJlEkoHrGI/2Mj1PKPzzpbbb/U0fCus2v1NjmE/xtcFRbId9vfhkjhODXbLN8l8EVXV0uUSSk2nBCpNTf2XjpwSPj4K2p+CWTC/1iPHLdE8ErpaVWi7FhUbdJIWui77nFDvoF5+2H3hhJtSc3P5RpRELoKV1Vusf07EOpUhyCzC+oTSIhyQo3lmHZwzQh6V4kFrSdG3C8S2v/g49N1pEQd0knjwSC/z3as49CCCFKXvsXg/VVfIsN5n0T43Yro6mJ+/NUF9ImkSD+rdgyELdk7DlTX4JqNAwnus1o6tPrGkkWCQm3fdnDNCFUr2FuS7+zdrs+iHmY+nX3qn5OiaR6NlF1EF+M9172MKUwT2MiRiDVwnpXdmmCSFgtfHwkpL//N0h56BP8LeZ9E0/tVkZTU7L660kjIcWGS6tbnrzSSJWs3q5uIuRhDu0WW6homtYqKxEq0zmS9S/juZ96aksRQgiV16qM1qkgTlCM1T2ZyaFMGgkbV5LqEGR8QW0SCclWuLEM2Mu2UDU6xzuC31hOfed6D2OQPk0FjgQh+G4pNO8Zs966Sqsb5dR+gysotey31taqL1kev5j3jiSvVvIRCdFnpj2yrLoHM4qEkNukSGeMY9Rt2pOgHpGJ94mb1ox41qIq+TM95g/NPaZbjjCTi6sdGelGQvr7f4P0I0F4M2r4sqq202T52TP/ak0g5RAJwsxdTZVcVnd+PLhpqxEWvLe/GhDb8VZ/I/mZgIXFxaXIvOfxvVvMkLqhgqozukI4xZ7M5FAmjYSNK0l1CDK+oDaLhMQrTJjubyyqHSUa2+LMj6eupBnJ4ONT2EgQnOf2rz5WL7lNB+S0U4i4GUWZrPWWV8Bxf+5z/Wj3xXKJhPC0+SCSdXAzkbVL/mHX7olrOCKELE0/mUxjFuvqSgSnoV38oaTbHgvaeyvWNH3g5elfJ+Y3XNihMd2OkviGgqjbtAfV6BzvSBo1Y9R1bdDyq9N2l7M8cs+vud9NNxIy2P8bpBsJIQ/zBSVrZ73Lcb/+zwXX/Ye+cNxKeCetFX8rrUgQpu/0fjf+x3O2rbpW/zjJiIYVeMZ6asA6G1+pvTIrSuOagNbhnbR6dU5W5Jmprp528qn2ZAaHMjxtPpik4Wj9SlIcgswvqETn8JoTO9EKE5chGrB2lcgODw31D09lPR0SFLtCRwItrzrrDInXbnjarFJZ3uA5S/vq4Asccp6tQjW00821G5xCppEgW+nOFeci7W41u5fXL4kFL6cqX+leJlh48+OJgTGeRBcc5xW1X40kbZVe9jBNSGGexnjJfvaU2GKeYtuFaU5V9aE8RHjNnTA6+I3VT3jG0lVRtdKdiAMO/d6KTsuMgMnmNWM0YNW2Mc8SjphKNxIy2P8JfyOdSJixtFesHrjQU7pKJqcdPk5LO/m4HtqAvXdI7CjaPBLw4rPLx3vtf2CCBe+tVlntGXuKuVZhv7W3jXm+djNSD6fmnXRdFf1UOhvwK/OB45ZZIeXzVqpDif1cK9XG+iKEECJ4zM3yJN3La1dC+BeMMln3cuYXVKJzeE0kJFphslgKjmorqPi2SgLdy5+cjF9oseizXexrr6Go8qYumv11xnWb1jSVo9Ka9t6LtvUz5AXn+cauwQv6Cwz7g9nYd8Y0Kg7R89vONtcqdddvj5gvG7kH9+iDDf+l0d/6zWP7tq+9lkI7mzRnWde0iz2radqJqNr2vm9t/3ppu9jbXlOKyps04nA6wUnLS/d16fX6yyz7TXfrUdrynMeExLzrlyRRfur+hbam1tMDtK67U/+jh48SEvHfO7FbXv4nY7L+RoIXnhhb/tze19PZfdOzjGObbTvmX1kvqBStJ4foPk3n0B3PYpI6K+wfvahq6dAODWhVSpXhkbhbfKub3y+9OyR+W4w2X4zgGa5Nhj6gKlu0t57xOP5vTbbXa/fVzK8s3dVUTlE17X0Xbb5Ymvt/ff9hys1/+a81f7sg+G10874W3bWREbPJODJ6j1Y0fKnRj3iWMSHRhfFvWhpVfX1d3cPu5c03/O+j/7jY1bSbQuVfsFMxEuNdV5rLKSRvVOu+tfnW3bF+GLFKlTedGXEHVwsvncm17X0XNm4dIbyT/rKLPqu/wLAj1409fabRN8K6c2n9nkx2KMWzZ9HNnlR2nDWPmC/1X2KGmhEqqWw48cODu3G70cUTQnBwympQtXYZrl8z9vQZ+9pKESWvaTM4AuuKmOEF9Xx5wzm87oya/ufGFX44HBUN6q9paTNF7xy6/WJmrO5uGIT6afmYX3uXl1ljc38/dflZ3iZ6FRheeKzf38n8ttIaIsx77De6axW0c3F7CwY+D+8cA+dWhv+BT9NnHgnRgPXcuY+nPo1NmffXX3ZH4p/b/23t3K+1/7F9hQKfNiz4HTeYex4+iv13TxnH0xv8Cz5WH2skrG3EyPL9rHjh57O9f09jgkLxCPsdN/TdJ/suMCx322wa1Gp6jHefbz4ZG4As4WXPcGt5VTtt0OtvJ5+QDz4RH2sk5AX+w/saTnEAAFjxWUcCAACAeBAJAAAAJBAJAAAAJBAJAAAAJBAJAAAAJBAJAAAAJBAJAAAAJBAJAAAAJBAJAAAAJBAJAAAAJBAJAAAAJBAJAAAAJBAJAAAAJBAJAAAAJBAJAAAAJBAJAAAAJBAJAAAAJBAJAAAAJBAJAAAAJBAJAAAAJBAJAAAAJBAJAAAAJBAJAAAAJBAJAAAAJBAJAAAAJBAJAAAAJBAJAAAAJBAJAAAAJBAJAIBCi/Kenx9PL213MbbD8vTjnzw83u5ipA0iAQBQUDgyxbZVn7DOCttdku2AZ6zHGtvYl5HtLkiaIBIAAAWEeaexsfaYdUa6URZmxi6f7tTqTitrqlqNo/5wtisO+0cvdao0OrqnvaGp+9azPNyJh34x1B3h/FlGV8z303XusWc+TEiU9/1ivfE/7hAmhODZe8d2NBtd7z6KRwWIBABAweDAOL2/ouNvfqk65CdNx3rsc5gQgufsZ2qp2qGxhWgW6414/nq459ECJoTgiPtyHapaTZ0s8ZOmZgq1Zx0JgpOWoxVUXSf7IaUifsuxirrz48EstnSrQSQAAAoEh1zGOtkXjCck/YegrfsQ612puWMeph6V7Te/jGW85pDbpEBUIz2+QIhUGVPtlrkcihrx3Ohq3leSUySca9AYGcN50/D/PPGufWiJuBnFzkbTxHL2JdwiEAkAgMKIuBlF+e4z4r08IYREXYZdqLSWfsKL/x526Mqyq8qj/OT33R0XbGK705JdW4pKNLZg9kX1DJ/8q2t0UJ5TJBjaOV+S/xldsPftpuLSsVhBJAAACiEasJ2uWFsJ4rlH/YoG1c3n0s1y9pEQD793GatRnc4RyHYNy95b9JVJXnDSuUbCyKTP+dBy5/76pwRCSOyleb+8ovtBoLi7FCASAAAFEHEzirKSTmvyGlCsyivaOG8OlWSU946a2varzBNZdy9j/9+/Nv4ziEnOkUBXNvawjn/x/EuL9mAbs65I0YC1q6ToHxQgEgAAeRcL2nsrUI3O8S7pIsI0p9pd0WmZEbKuywPu+3c49opWqdQwY/7s1oNnrF+bHMEoIblGAp5zPX4pNYnhabMC7aWdi2uWCI3pdsgqtKPZN3AVHkQCACDf8BuLageqNrreJ6mm8eIk85fGTtbN52EQDp7h2mSldfSTYMahEA3YDAPiCKicI2ENwUnLUanWvnZ6Hu8yNCBZBzdTvLMUIBIAAHmGvWwLJas2/PY+8f8P+629LWf+keV9fYLfe802lyFKlXFtHn1mqlGoB2nRoLpBhqqU2kGadfGZFoGfGD7ROzy5uDL9wknLEVJy/rVLvXcZq5G8hZ0u2g4FiAQAQH6997KHKdRgSFyvhv0Pzp+4ttLOjl+Zj3+fcQUZ+sVQV0rVGV0h8S99nFKO0F6DK5d3Zgh+rh1l+5QQdRl2xQ+oXbJrS6md9Pj6mXjvfzNUy1A948l84O3WgEgAAOQVnmZb5GhHvyO0saaPBsfP19dpro5wku91B3vsGVfkoad0VUl5GzsVwYSIbfRUXEJkJ6dIIMsTV87ceCG1g0WDjsGqcjXn3TgP4Z1DV4PQQfN01tO2CwsiAQCQT3jWopIlniUQ844cLqfQGqUK86vMK/IoP3Xf2K3u0g7Q9Nfqhj0Nmr86sn83BiG8i6X7NU07EdrZpOnPouGIECz4Hxk7j2h0g7qug41tF6xTCbs2YkHbyRJU3prTOKsCgkgAAOSRWOVlV9F/FvC0WYGQTG3NehpFQUEkAADyKOik63Ju1v+kRV2GXRTaSTvDxRiaEAkAgPzBr8yKUiQ7bg18BK942yZvreqdRdudAJEAAMifoE1TgtAekxsSIamQ26RAqFJjm9/ukiQAkQAAyJuYh6kv4oby4hANWI/LUEk987wIR6JCJAAA8gUv2XtKEZLTzs/yC2rpEuexbZjbXBQgEgAA+RLxsW0IyZVJ3xENCCGE+DklQqiZ9RVfBzNEAgAgX3gnXVO0reRFROxxKcqHKYgEAD4bgt/5j4n5At6ZimNpamhn5jO9Pitiy1FRjsuCSADgMyHMWrsrCntnmsa7hoQ3o8YulaaP7lM1NJ665V7MOaFwyGWsa133grn0hX0Pb3H2F/MCJpj3Oa03LO6sP2iA+VfWC0dbVKeHdF+p9P8/6Xv9os9Me2TZvzyjkCASAPgs4OCYvqrA1ZA4CSvVT4Q8zPEe6WXUS27TAVTRbZ3NrTzLE6bGsg3vHE2f2NgloWq62KxTSpjmVPtamQkeE8xPDquak38uIi/v6SsIiAQAPgf85OUTnUf3FXaGlNgekiISos9Me2RU7blxPrayeEW7ZSaHnwx5rnU3H6jILRIOa0zfGmjT8L2n3uy/3xD2sl/K6i67I5gQEpsy76f2aO1/JFlYjIRibGGDSADgk4cjv984MvDoxUh7YashMRJKTtqCSQbc48XJYW0HbfMLeGXEai590TjyO3vyyuNRuia3SNDm4ckp9JSuKkt7qsG8TVMJkQAA2A7YZzk+ZAsIYYe+DO1UW98W6ofmLO1U+gNpeJehAe0ecPDZTtgSfr/Vc31yOejMORJGPFNO29071uyfEmIeph5Vae3+efcjC3f3oXsu5T4QW6uKcbQuRAIAn7ZowKY/wnmx9JmXQlZD4nD7dCIB8167qa1ObZ7Muns54r973jgewGL1mlMkKBrP3HR4F/kpi1bxFyabIokTkiv+rOpn7K/5yNvxyx2KVJ+Ng0gAAGyL0C/GI9c94qdm/JwSUbsMrkR3wjjkutahTKm13+pP+dHg9CIBv3Pf50bYq2eUzScYx0x2TTZ49v7X58aCmJBcI0GYc/7z5bJYd4enzQdR1Vlnxp/iET+/U1JneibtoCW7trRMwbiT7C+IBADANgh5mEO7laekjwtrlZUIlekchepfTv8pgRBCIjNch4xS0OOBjO/K8ayt32hfEKMtx0hYQ3DSclSltWf6iqbonOUohfboHIsrJXxlVpQm/6AmRAIAYKthwXv7q4Gx1Y97Jf5GfP68Nv0nQqjk2IOUzxKr5fOxzQhRrZw/w0yIuk01DepBKeh06gY5qlRqaQPrSjboM+ma+MnvT5z4fnKlC0Fw0vKsauqoy7BrTXexj1PKk6fjuwfH/h9C//GfpheZ/lChQSQA8InCM9ZTA2tG/ae6dd2ChiMcchnrqNI6wy+h+OWTtGSlzccp5dnm3JLLsBdRh8xT4oOTOAiqjnZu/EjoZkJjuh3lq1kSdRl2UcnfCAtPCQCALRX2W3vbmOdrK+fUt6452zQSnGer0K429mVE/FdH/w4UlxBZyiUS8PLk9TPXnvHiYwoOOPR7y1WcN2m3cAqhKbZjR+str4AJwREPo5A1myaTjTGFSAAAbJEY7/pBr26UI6q86cyIW7rhjflsF3VHG+QUomrb+y5k3saShk37EnBwyvpNd8dx7RBN6442VO7XMGPJh+VsKsa7btNDXU3lFCpv0gxl0XBECAn7Ry91qjQ6uq+r+UDbhftTWc9WE946h7VK5XGdTt3UdGrY+TZ58kIkAAA+eUX8gs8iI0ZCXHd00YBIAADkyaYvtACSGUt7BcxeBgB80iAS0gXvOAIAfPLEEU0QCZsTI6GN9aU3XHcLQSQAAPKleG9+i0sRP05BJAAA8iVg11ZBJGxOjIQyvSNcdB9fhkgAAOTLksuwtzjHVhYXcbTuHpO76L6zCZEAAMgb8e1vpQrzq6K7+y0mMQ9Tjwr5ZpEcQCQAAPJGahEp3Jv1PgU47NCXFev8DYgEAEDeiG+yS+/+N+gyfNGadRNTzPvw+h27Z14gBPNep/W2xZ35i4kkUX7q/gWVUqXt13Wq9Q/+N6uaOux7yN2fCqbxeCQ+SxVp8xpEAgAgf8IOXVo3wHh58kojlUO1KA3aEZXWdLLuLF9EgQUvp6pqZyYXMYnyL26o/jTgyPh7CWTl25lrrb5QL544dblIO+EhEgAAeSTOy91sxH3Efa3r0IGS3CKhocvEGGnTjXtP/sVn/56kKfaLnSufvglPmQ9RFb32ZN+OTrWe58zBr0wj3Iofrmr+3MJMLm9cEr9mm8sQddQyV3ydyxAJAIC8CrlNCrTJV2hCvw8PXHE9oOW5RUJ77t2z4stZmxhPgqo7M0HbqV770of1zj3oPXEn8RtVl+zaUpT86zrbDCIBAJBH4icHSuqZ50lqPCx4uZ4rE8uCM+dI+MHj+9Vm+W9r9k8Jyx6mCZX22Bdn3Q/vcpZH7vl89IsL09wJ2jaXuO0s5mHqEbWTHi/OHniIBABAXgWsalnyb6Vh392vvxsPRknukVB54Azr8PLvpiy9ira/TmbTl/DWqt6JShSqwet2bzAy9+Ry28EzWXYvfxDxW079hfMmCSnBz6koVKmxzef0IwUDkQAAyCv8xqLagUpO2hK0yAuz1vPnHAFMSK6RgGedj3+XmnvwK7NCXkU/zfxTPOIbOA6Y3GKTD16y95RSXzCeHD7qE3pK/+l0om0Xzds0lUh23Booxo4EApEAAMg3YdailiXqTsCBh/0Dowvi/XOOkbAG76RrUGmPfSnT9qMZS3tF/Isl8LRZkarVa1PCrEUta2Z9yQqyZNeWIpnKMlusc/kgEgAAeYZnLSoZtUM3tvZmO+Q2tTSodbRoUN0gk1UqT9H0bRefYQ2MFyeHe08MT6x0IYjDOrN4i9ySy7B3zZBZP6fMaRLZW6t6Z4nGlmSKhPht0V2d1n8XayJAJAAA8g7P2rqr0Y7+VAP8/Zwy6+laUZdhF0XtN09JURKwa6vQTtqZ8VvkxDp6NUuiLsMutFNtfZtNqYg0WyJ5orxz6GpQdoNctwpEAgAg78TBndXdtuQNJLlEAuEnrwxeeyFNFcbBMX1VlYqbzubWPvKSbattZX8XCCEk5GG+kDVemVzO9iY+5UMGDlg7S2RZ9XlsHYgEAEAB4Gm2RS5r42YS1K7vXKxhSNNUjqjypq6hLBqOCCHCm1Fjl0rTR+u+am5UXbC+ynYcKhbmxodPHFZ2fa1Tf9HUfcM5l8Po0OCotkK+3/wy0fZEZrgOmayDmym6z+bEg0gAABRCNGA7XZHj6J1PSeSZqa60ovtBoGi7EQghEAkAgELBXq5tR/FXglsiGrCdrij6RwQCkQAAKBgc8TAKGTwoELI8YWrcqWDcxR4IEAkAgELiJ03NJa23Er/t53MRmeE6SnLptd5CEAkAgEJanjA11h6zJupm/jzg2XvHdrSYJovxVdgbQSQAAAoKR6bYtuoT1tki/IZY4eEZ6zFFlgNktwNEAgCg0KK85+fH00ubL/jpWZ5+/JMn+885bDmIBAAAABKIBAAAABKIBAAAABKIBAAAABKIBAAAABKIBAAAABKIBAAAABKIBAAAAJL/A7J3zs/YGNXWAAAAAElFTkSuQmCC" alt="" />

【题意】

给定一个矩阵,元素是行纵之和,Q a b c d 是查询以这4个数对角的矩阵和,M a b c是将a b坐标的元素赋值为c。

【思路】

记录前缀和

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
inline int read()
{
int x=,c=getchar(),f=;
for(; c>''||c<''; f=c=='-',c=getchar());
for(; c>=''&&c<=''; c=getchar())
x=(x<<)+(x<<)+c-'';
return f?-x:x;
} int s[][];
int a[][];
int main()
{
int cas = read();
while(cas -- )
{
int n = read() , m = read() , q = read();
for (int i=; i<=n; i++)
{
a[i][] = ;
for (int j=; j<=m; j++)
{
s[i][j] = i + j;
a[i][j] = a[i][j-] + s[i][j];
}
} while (q -- )
{
char b[];
scanf("%s", b);
if (b[] == 'Q')
{
int x1 = read() , y1 = read() , x2 = read() , y2 = read();
ll ans = ;
for (int i=x1; i<=x2; i++) ans += (ll)(a[i][y2]-a[i][y1-]);
printf("%lld\n", ans);
}
else if (b[] == 'M')
{
int x = read() , y = read() , v = read();
s[x][y] = v;
for (int j=y; j<=m; j++) a[x][j] = a[x][j-] + s[x][j];
}
}
}
return ;
}

【zzulioj-1731】矩阵的更多相关文章

  1. zzuli1731 矩阵(容斥)

    1731: 矩阵 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 600  Solved: 106 SubmitStatusWeb Board Descr ...

  2. HDU-6395 多校7 Sequence(除法分块+矩阵快速幂)

    Sequence Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)Total ...

  3. C语言 · 矩阵乘法 · 算法训练

    问题描述 输入两个矩阵,分别是m*s,s*n大小.输出两个矩阵相乘的结果. 输入格式 第一行,空格隔开的三个正整数m,s,n(均不超过200). 接下来m行,每行s个空格隔开的整数,表示矩阵A(i,j ...

  4. 获取Canvas当前坐标系矩阵

    前言 在我的另一篇博文 Canvas坐标系转换 中,我们知道了所有的平移缩放旋转操作都会影响到画布坐标系.那在我们对画布进行了一系列操作之后,怎么再知道当前矩阵数据状态呢. 具体代码 首先请看下面的一 ...

  5. CSharpGL(32)矩阵与四元数与角度旋转轴的相互转换

    CSharpGL(32)矩阵与四元数与角度旋转轴的相互转换 三维世界里的旋转(rotate),可以用一个3x3的矩阵描述:可以用(旋转角度float+旋转轴vec3)描述.数学家欧拉证明了这两种形式可 ...

  6. “为什么DirectX里表示三维坐标要建一个4*4的矩阵?”

    0x00 前言 首先要说明的是,本文的标题事实上来自于知乎上的一个同名问题:为什么directX里表示三维坐标要建一个4*4的矩阵? - 编程 .因此,正如Milo Yip大神所说的这个标题事实上是存 ...

  7. js实现蛇形矩阵

    参加腾讯前端实习生笔试,真的是被虐了千百遍,除了一条js程序题,其他半点前端都没有,都是考算法,计算机原理,数据结构.下面贴上腾讯笔试最后三大条中的一条,实现一个蛇形矩阵的输出.蛇形矩阵的什么样这里我 ...

  8. ACM 中 矩阵数据的预处理 && 求子矩阵元素和问题

            我们考虑一个$N\times M$的矩阵数据,若要对矩阵中的部分数据进行读取,比如求某个$a\times b$的子矩阵的元素和,通常我们可以想到$O(ab)$的遍历那个子矩阵,对它的各 ...

  9. PAT 1050. 螺旋矩阵(25)

    本题要求将给定的N个正整数按非递增的顺序,填入"螺旋矩阵".所谓"螺旋矩阵",是指从左上角第1个格子开始,按顺时针螺旋方向填充.要求矩阵的规模为m行n列,满足条 ...

  10. [LeetCode] Kth Smallest Element in a Sorted Matrix 有序矩阵中第K小的元素

    Given a n x n matrix where each of the rows and columns are sorted in ascending order, find the kth ...

随机推荐

  1. Linux学习笔记(5)磁盘分区(parted)

    Linux学习笔记(5)磁盘分区(parted) .演示: ()parted /dev/sdb :进入parted 分区命令(可以使用help来查看命令详细描述)(2)p :列出当前磁盘分区信息,可以 ...

  2. iOS学习之NSString

    一.不可变字符 NSString是不可变字符串,它产生的其他字符串方法都是生成一个新的字符串,而不会改变原来字符串. 1.创建方式 //1)字面量,它是常量字符串,存储常量区 NSString *st ...

  3. Numpy中的时间类型

    从Numpy1.7开始,已经有了原生的日期-时间支持,基本类型称为datetime64. In [1]: import numpy as np In [2]: nd = np.datetime64(' ...

  4. 微信小程序组件text

    基础内容text:官方文档 Demo Code var initData = 'this is first line\nthis is second line' var extraLine = []; ...

  5. Keras实践:实现非线性回归

    Keras实践:实现非线性回归 代码 import os os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE" import ke ...

  6. 扯一扯 C#委托和事件?策略模式?接口回调?

    早前学习委托的时候,写过一点东西,今天带着新的思考和认知,再记点东西.这篇文章扯到设计模式中的策略模式,观察者模式,还有.NET的特性之一--委托.真的,请相信我,我只是在扯淡...... 场景练习 ...

  7. react下将输入的汉字转化为拼音

    1.首先需要一个简单的拼音和汉字对应的字典文件: /** * 收录常用汉字6763个,不支持声调,支持多音字,并按照汉字使用频率由低到高排序 */ var pinyin_dict_notone = { ...

  8. RPC数据通信

    RPC全称为Remote Procedure Call,翻译过来为“远程过程调用”.目前,主流的平台中都支持各种远程调用技术,以满足分布式系统架构中不同的系统之间的远程通信和相互调用.远程调用的应用场 ...

  9. Effective C++ 条款10:令operator= 返回一个reference to *this

    class Widget { public: ... Widget& operator+=(const Widget& rhs) // 返回类型是个reference,指向当前对象 { ...

  10. idea绿色版+谷歌浏览器绿色版——设置打开jsp文件

    首先我们的工具有 1.idea绿色版 2.Chrome绿色版 3.JavaJDK 4.Tomcat绿色版 文件放在那里都可以 1.idea设置默认打开Chrome 2.idea设置选择Tomcat和J ...