二维离散余弦变换(2D-DCT)
图像处理中常用的正交变换除了傅里叶变换以外,还有一些其它常用的正交变换,其中离散余弦变换DCT就是一种,这是JPEG图像压缩算法里的核心算法,这里我们也主要讲解JPEG压缩算法里所使用8*8矩阵的二维离散余弦正变换。
一维离散余弦变换
一般表达式
要弄懂二维离散余弦变换,首先我们需要先了解它在一维下的情况,具体表达式如下:

式中F(u)是第u个余弦变换值,u是广义频率变量,u=1,2,….,N-1;f(x)是时域N点序列。x= 1,2,….,N-1;
矩阵表示法
更为简洁的定义离散余弦变换是采用矩阵式定义。根据以上公式定义可知,我们可以来推导一下,DCT变换可以用矩阵的形式表示出来,例当N=8时一维离散余弦变换的表达式展开可以得到如下表达式: u=1,2,...7

当u=0,1,...,7时,我们可以根据上述公式计算出离散余弦变换时每一个f(x)前面的变换系数如下:

上式可以用矩阵的形式表达出来

F(u)为变换域矩阵,是时域f(x)与A矩阵计算的结果;A为变换系数矩阵,当N取定值时,A就是一个常量矩阵;f(x)为时域数据矩阵,即需要转换到变换域的原始数据,则一维离散余弦变换的矩阵定义式可写成下方表达式:

二维离散余弦变换
二维离散余弦变换可由下列表达式表示

6是二维离散余弦变换的正变换公式,其中f(x,y)是空间域一个N*N的二维向量元素,即一个N*N的矩阵,x,y = 0,1,2,…,N-1;F(U,V)是经计算后得到的变换域矩阵,u,v = 0,1,2,….,N-1.求和可分性是二维离散余弦变换的一个重要特征,因此我们可以用下式表示6:

由一维和二维的离散余弦变换公式性质可以推导得到二维离散余弦变换也可以写成矩阵相乘形式

A为一维离散余弦变换的变换系数矩阵,AT是A的转置矩阵
对图像进行二维离散余弦变换(2D-DCT)的步骤
1.获得图像的二维数据矩阵f(x,y);
2.求离散余弦变换的系数矩阵A;
3.求系数矩阵对应的转置矩阵AT;
4.根据公式F=A[f(x,y)]AT计算离散余弦变换;
二维离散余弦变换(2D-DCT)的更多相关文章
- Unity 用户手册用户指南二维纹理 (Texture 2D)
http://www.58player.com/blog-2327-953.html 二维纹理 (Texture 2D) 纹理 (Textures) 使您的 网格 (Meshes).粒子 (Parti ...
- 二维纹理 Texture 2D
Textures bring your Meshes, Particles, and interfaces to life! They are image or movie files that yo ...
- C++实现离散余弦变换(参数为二维指针)
C++实现离散余弦变换(参数为二维指针) 写在前面 到目前为止已经阅读了相当一部分的网格水印等方面的论文了,但是论文的实现进度还没有更上,这个月准备挑选一些较为经典的论文,将其中的算法实现.在实现论文 ...
- 二维DCT变换 | Python实现
引言 最近专业课在学信息隐藏与数字水印,上到了变换域隐藏技术,提到了其中的DCT变换,遂布置了一个巨烦人的作业,让手动给两个\(8\times8\)的矩阵做二维DCT变换,在苦逼的算了一小时后,我决定 ...
- 二维DCT变换
DCT(Discrete Consine Transform),又叫离散余弦变换,它的第二种类型,经常用于信号和图像数据的压缩.经过DCT变换后的数据能量非常集中,一般只有左上角的数值是非零的,也就是 ...
- 第47章 QR-Decoder-OV5640二维码识别—零死角玩转STM32-F429系列
第47章 QR-Decoder-OV5640二维码识别 全套200集视频教程和1000页PDF教程请到秉火论坛下载:www.firebbs.cn 野火视频教程优酷观看网址:http://i.y ...
- 又是新动作!微信小程序专属二维码出炉
又到了晚上,微信又给我们带来了惊喜,并这次不是新的能力,而是把大家再熟悉不过的二维码换了新的造型. 正式揭晓:微信特制的小程序码.扫一扫新二维码 只要你的微信升级到了 6.5.7 版本,就可以扫码或者 ...
- [LeetCode] 251. Flatten 2D Vector 压平二维向量
Implement an iterator to flatten a 2d vector. For example,Given 2d vector = [ [1,2], [3], [4,5,6] ] ...
- [LeetCode] Range Sum Query 2D - Mutable 二维区域和检索 - 可变
Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper lef ...
随机推荐
- RMAN备份等级详解
(2011-06-27 11:38:28) 转载▼ 标签: 杂谈 分类: oracle 在rman增量备份中,有差异增量和累积增量的概念 1.概念 差异增量:是备份上级及同级备份以来所有变化的数据块, ...
- 【Leetcode】【Medium】Combination Sum II
Given a collection of candidate numbers (C) and a target number (T), find all unique combinations in ...
- 教你如何封装异步网络连接NSURLConnection实现带有百分比的下载
教你如何封装异步网络连接NSURLConnection实现带有百分比的下载 注:本教程需要你对block有着较为深刻的理解,且对如何封装对象有着一些经验. 也许你已经用惯了AFNetworking2. ...
- lua学习笔记之userdata
这一段时间看了<programming in lua>中的第28章,看一遍并不是很难,但是只是朦胧的感觉,雾里看花,水中望月.最终还是决定敲出来自己看看,练练手,结果受益不少,也遇到了一些 ...
- Windows 如何查看本地端口被进程占用的情况?
1.查看端口占用情况: 1.开始--运行--cmd 进入命令提示符. 2. 输入netstat -ano(或netstat -nao) ,即可看到所有进程(这里显示进程的PID)占用端口的情况. 3. ...
- Python学习---线程基础学习
线程基础 什么是线程(thread) 线程是CPU调度能够进行运算调度的最小单位.它被包含在进程之中,是进程中的实际运作单位.一条线程指的是进程中一个单一顺序的控制流[换言之,线程就是一堆指令集合], ...
- Hibernate缓存策略
Hibernate的一级缓存又称为Session缓存,其适用范围是在当前的会话之中,其生命周期和Session相同,随着Session的销毁,一级缓存也会随之销毁.一级缓存是不能取消的,Hiberna ...
- CIKM 2013推荐系统论文总结
这几天在家没事,介绍几篇CIKM上关于推荐系统的文章, Personalized Influence Maximization on Social Networks Social Recommenda ...
- Java使用iText生成word文件的完美解决方案(亲测可行)
JAVA生成WORD文件的方法目前有以下种: 一种是jacob 但是局限于windows平台 往往许多JAVA程序运行于其他操作系统 在此不讨论该方案 一种是pio但是他的excel处理很程序 wor ...
- ctrl + alt + o 快速删除掉没有使用的 import
ctrl + alt + o 优化导入,可以快速删除掉没有使用的 import