Description

An oligarch Vovan, as many other oligarchs, transports oil from West Cuckooland to East Cuckooland. He owns a huge oil-producing station in West Cuckooland, an equally huge oil-refining station in East Cuckooland and a system of oil pipelines to move oil from one country to another. Vovan has a map of these pipelines on his table. He would like to know, how much oil this system can transport.
Each pipeline connects some pair of stations. All stations on the map are numbered: the producing station has number 1, the refining one has number N and the transit ones have numbers from 2 toN − 1, inclusive. Each pipeline can transport a limited quantity of oil, but in any direction. Vovan doesn't know that the Earth is round, so each station on his map has plane coordinates (xi and yi are the coordinates of i-th station). The pipelines are represented as line segments. Any pair of pipelines on the map can intersect only at endpoints. It is known, that the oil-producing station has the smallest x-coordinate of all stations, and the oil-refining station has the largest x-coordinate.

Input

The first line contains an integer N. 2 ≤ N ≤ 10000. Next N lines contain the coordinates of the stations (xiyi) separated with a space. Coordinates are integers with absolute values no more than 108. Next line contains an integer M — the number of oil pipelines. Next M lines contain specifications of pipelines: for each pipeline, the three numbers describe a pair of stations connected by it and its flow capacity — an integer from 1 to 108. It is guaranteed that Vovan's system can transport some positive quantity of oil, and can't transport more than 2·109 oil units.

Output

In the first line output the maximal quantity of oil that the Vovan's system can transport. In the following M lines output the transportation plan — triples of numbers (ABC), denoting that C oil units should flow from station A to station B. All pipelines should be presented exactly once in this list (even those, in which the oil flow is equal to zero). The values of C should always be non-negative.

题目大意:从源点1到汇点n有m条双向边,每条边有一个容量,问从1到n的最大流量,并输出每条边的流量(如果是0要输出0,是从流入点到流出点)

思路:直接从1到n求最大流过了……本意是要转平面图最短路径的?

PS:根据那个不知道什么定理,好像边数最多是2*N-3

代码(437MS):

 #include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <queue>
using namespace std; const int MAXN = ;
const int MAXE = MAXN * ;
const int INF = 0x7fffffff; inline void _min(int &a, const int &b) {
if(a > b) a = b;
} struct SAP {
int head[MAXN], gap[MAXN], dis[MAXN], pre[MAXN], cur[MAXN];
int next[MAXE], to[MAXE], cap[MAXE], flow[MAXE];
int ecnt, n, st, ed; void init() {
memset(head, , sizeof(head));
ecnt = ;
} void add_edge2(int u, int v, int c) {
to[ecnt] = v; cap[ecnt] = c; flow[ecnt] = ; next[ecnt] = head[u]; head[u] = ecnt++;
to[ecnt] = u; cap[ecnt] = c; flow[ecnt] = ; next[ecnt] = head[v]; head[v] = ecnt++;
} void bfs() {
memset(dis, 0x3f, sizeof(dis));
queue<int> que; que.push(ed);
dis[ed] = ;
while(!que.empty()) {
int u = que.front(); que.pop();
++gap[dis[u]];
for(int p = head[u]; p; p = next[p]) {
int &v = to[p];
if(cap[p ^ ] && dis[v] > n) {
dis[v] = dis[u] + ;
que.push(v);
}
}
}
} int Max_flow(int ss, int tt, int nn) {
st = ss, ed = tt, n = nn;
int ans = , minFlow = INF, u;
for(int i = ; i <= n; ++i) {
cur[i] = head[i];
gap[i] = ;
}
u = pre[st] = st;
bfs();
while(dis[st] < n) {
bool flag = false;
for(int &p = cur[u]; p; p = next[p]) {
int &v = to[p];
if(cap[p] > flow[p] && dis[u] == dis[v] + ) {
flag = true;
_min(minFlow, cap[p] - flow[p]);
pre[v] = u;
u = v;
if(u == ed) {
ans += minFlow;
while(u != st) {
u = pre[u];
flow[cur[u]] += minFlow;
flow[cur[u] ^ ] -= minFlow;
}
minFlow = INF;
}
break;
}
}
if(flag) continue;
int minDis = n - ;
for(int p = head[u]; p; p = next[p]) {
int &v = to[p];
if(cap[p] > flow[p] && dis[v] < minDis) {
minDis = dis[v];
cur[u] = p;
}
}
if(--gap[dis[u]] == ) break;
++gap[dis[u] = minDis + ];
u = pre[u];
}
return ans;
}
} G; int x, y, n, m, a, b, c;
int id[MAXE]; int main() {
while(scanf("%d", &n) != EOF) {
for(int i = ; i <= n; ++i) scanf("%d%d", &x, &y);
G.init();
scanf("%d", &m);
for(int i = ; i <= m; ++i) {
scanf("%d%d%d", &a, &b, &c);
id[i] = G.ecnt;
G.add_edge2(a, b, c);
}
printf("%d\n", G.Max_flow(, n, n));
for(int i = ; i <= m; ++i) {
int &p = id[i];
if(G.flow[p] >= ) printf("%d %d %d\n", G.to[p ^ ], G.to[p], G.flow[p]);
else printf("%d %d %d\n", G.to[p], G.to[p ^ ], G.flow[p ^ ]);
}
}
}

URAL 1664 Pipeline Transportation(平面图最大流)的更多相关文章

  1. BZOJ 1001 [BeiJing2006] 狼抓兔子(平面图最大流)

    题目大意 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的.而且现在的兔子还比较笨,它们只有两个窝,现在你做为狼王,面对下面这样一个网格的地形: ...

  2. 【 UVALive - 5095】Transportation(费用流)

    Description There are N cities, and M directed roads connecting them. Now you want to transport K un ...

  3. s - t 平面图最大流 (附例题 bzoj 1001)

    以下均移自 周冬的<两极相通-浅析最大最小定理在信息学竞赛中的应用> 平面图性质 1.(欧拉公式)如果一个连通的平面图有n个点,m条边和f个面,那么f=m-n+2 2.每个平面图G都有一个 ...

  4. CodeForces E. Goods transportation【最大流+dp最小割】

    妙啊 首先暴力建图跑最大流非常简单,s向每个i连流量为p[i]的边,每个i向t连流量为s[i]的边,每个i向j连流量为c的边(i<j),但是会又T又M 考虑最大流=最小割 然后dp求最小割,设f ...

  5. 刷题向》图论》BZOJ1001 平面图最大流、平面图最小割、单源最短路(easy+)

    坦白的说这是一道水题,但是因为是BZOJ上的1001,所以这道题有着特殊的意义. 关于最大流转最短路的博客链接如下:关于最大流转最短路两三事 这道题的图形很规矩,所以建边和建点还是很简单的. 题目如下 ...

  6. BZOJ-1001 狼抓兔子 (最小割-最大流)平面图转对偶图+SPFA

    1001: [BeiJing2006]狼抓兔子 Time Limit: 15 Sec Memory Limit: 162 MB Submit: 14686 Solved: 3513 [Submit][ ...

  7. 【转载】图论 500题——主要为hdu/poj/zoj

    转自——http://blog.csdn.net/qwe20060514/article/details/8112550 =============================以下是最小生成树+并 ...

  8. 【HDOJ图论题集】【转】

    =============================以下是最小生成树+并查集====================================== [HDU] How Many Table ...

  9. hdu图论题目分类

    =============================以下是最小生成树+并查集====================================== [HDU] 1213 How Many ...

随机推荐

  1. const、let、var的主要区别

    接触ES6之后,以前定义变量的方式由var增加了let.const,平时看别人用也不知道如何区别具体差别,好好科普了一下记录下来,方便大家一起学习. var(大家最熟悉的定义方式) 1.可定义全局作用 ...

  2. MySQL学习【SQL语句上】

    1.连接服务端命令 1.mysql -uroot -p123 -h127.0.0.1 2.mysql -uroot -p123 -S /tmp/mysql.sock 3.mysql -uroot -p ...

  3. word 或者 WPS 使用两个目录的时候去掉中间的空格间隙

    在生成图表目录时,发现Office word图表目录中多个标题之间的空行无法删除,我是自己建的标签,比如“图1-”.“图2-”…….“表1-”.“表2-”…… 发现“图1-”.“图2-”…….“表1- ...

  4. free -g 说明

    free -g 说明: free -g -/+ buffers/cache 说明: buffer 写缓存,表示脏数据写入磁盘之前缓存一段时间,可以释放.sync命令可以把buffer强制写入硬盘 ca ...

  5. css3实现自定义滚动条样式详解

    在写页面的时候有时候滚动条的样式与页面风格不统一这时候就用到了自定义滚动条 1.首先弄清楚页面的滚动条分为哪些部分,在写的时候分为几块 定义滚动条的时候先进行宏观定义,定义滚动条,然后定义滑块,然后定 ...

  6. JavaScript脚本加载相关知识

    <script>标签的位置 HTML4规范允许<script>可以放在<head>或<body>中. 但是,放在<head>中会导致性能问题 ...

  7. 常用的JavaScript设计模式(二)Factory(工厂)模式

    Factory通过提供一个通用的接口来创建对象,同时,我们还可以指定我们想要创建的对象实例的类型. 假设现在有一个汽车工厂VehicleFactory,支持创建Car和Truck类型的对象实例,现在需 ...

  8. Mysql慢查询开启和查看 ,存储过程批量插入1000万条记录进行慢查询测试

    首先登陆进入Mysql命令行  执行sql      show variables like 'slow_query%';  结果为OFF 说明还未开启慢查询 执行sql     show varia ...

  9. 【Hbase三】Java,python操作Hbase

    Java,python操作Hbase 操作Hbase python操作Hbase 安装Thrift之前所需准备 安装Thrift 产生针对Python的Hbase的API 启动Thrift服务 执行p ...

  10. (cmath)关于头文件cmath

    关于头文件cmath // -*- C++ -*- C forwarding header. // Copyright (C) 1997-2014 Free Software Foundation, ...