URAL 1664 Pipeline Transportation(平面图最大流)
Description
Input
Output
题目大意:从源点1到汇点n有m条双向边,每条边有一个容量,问从1到n的最大流量,并输出每条边的流量(如果是0要输出0,是从流入点到流出点)
思路:直接从1到n求最大流过了……本意是要转平面图最短路径的?
PS:根据那个不知道什么定理,好像边数最多是2*N-3
代码(437MS):
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <queue>
using namespace std; const int MAXN = ;
const int MAXE = MAXN * ;
const int INF = 0x7fffffff; inline void _min(int &a, const int &b) {
if(a > b) a = b;
} struct SAP {
int head[MAXN], gap[MAXN], dis[MAXN], pre[MAXN], cur[MAXN];
int next[MAXE], to[MAXE], cap[MAXE], flow[MAXE];
int ecnt, n, st, ed; void init() {
memset(head, , sizeof(head));
ecnt = ;
} void add_edge2(int u, int v, int c) {
to[ecnt] = v; cap[ecnt] = c; flow[ecnt] = ; next[ecnt] = head[u]; head[u] = ecnt++;
to[ecnt] = u; cap[ecnt] = c; flow[ecnt] = ; next[ecnt] = head[v]; head[v] = ecnt++;
} void bfs() {
memset(dis, 0x3f, sizeof(dis));
queue<int> que; que.push(ed);
dis[ed] = ;
while(!que.empty()) {
int u = que.front(); que.pop();
++gap[dis[u]];
for(int p = head[u]; p; p = next[p]) {
int &v = to[p];
if(cap[p ^ ] && dis[v] > n) {
dis[v] = dis[u] + ;
que.push(v);
}
}
}
} int Max_flow(int ss, int tt, int nn) {
st = ss, ed = tt, n = nn;
int ans = , minFlow = INF, u;
for(int i = ; i <= n; ++i) {
cur[i] = head[i];
gap[i] = ;
}
u = pre[st] = st;
bfs();
while(dis[st] < n) {
bool flag = false;
for(int &p = cur[u]; p; p = next[p]) {
int &v = to[p];
if(cap[p] > flow[p] && dis[u] == dis[v] + ) {
flag = true;
_min(minFlow, cap[p] - flow[p]);
pre[v] = u;
u = v;
if(u == ed) {
ans += minFlow;
while(u != st) {
u = pre[u];
flow[cur[u]] += minFlow;
flow[cur[u] ^ ] -= minFlow;
}
minFlow = INF;
}
break;
}
}
if(flag) continue;
int minDis = n - ;
for(int p = head[u]; p; p = next[p]) {
int &v = to[p];
if(cap[p] > flow[p] && dis[v] < minDis) {
minDis = dis[v];
cur[u] = p;
}
}
if(--gap[dis[u]] == ) break;
++gap[dis[u] = minDis + ];
u = pre[u];
}
return ans;
}
} G; int x, y, n, m, a, b, c;
int id[MAXE]; int main() {
while(scanf("%d", &n) != EOF) {
for(int i = ; i <= n; ++i) scanf("%d%d", &x, &y);
G.init();
scanf("%d", &m);
for(int i = ; i <= m; ++i) {
scanf("%d%d%d", &a, &b, &c);
id[i] = G.ecnt;
G.add_edge2(a, b, c);
}
printf("%d\n", G.Max_flow(, n, n));
for(int i = ; i <= m; ++i) {
int &p = id[i];
if(G.flow[p] >= ) printf("%d %d %d\n", G.to[p ^ ], G.to[p], G.flow[p]);
else printf("%d %d %d\n", G.to[p], G.to[p ^ ], G.flow[p ^ ]);
}
}
}
URAL 1664 Pipeline Transportation(平面图最大流)的更多相关文章
- BZOJ 1001 [BeiJing2006] 狼抓兔子(平面图最大流)
题目大意 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的.而且现在的兔子还比较笨,它们只有两个窝,现在你做为狼王,面对下面这样一个网格的地形: ...
- 【 UVALive - 5095】Transportation(费用流)
Description There are N cities, and M directed roads connecting them. Now you want to transport K un ...
- s - t 平面图最大流 (附例题 bzoj 1001)
以下均移自 周冬的<两极相通-浅析最大最小定理在信息学竞赛中的应用> 平面图性质 1.(欧拉公式)如果一个连通的平面图有n个点,m条边和f个面,那么f=m-n+2 2.每个平面图G都有一个 ...
- CodeForces E. Goods transportation【最大流+dp最小割】
妙啊 首先暴力建图跑最大流非常简单,s向每个i连流量为p[i]的边,每个i向t连流量为s[i]的边,每个i向j连流量为c的边(i<j),但是会又T又M 考虑最大流=最小割 然后dp求最小割,设f ...
- 刷题向》图论》BZOJ1001 平面图最大流、平面图最小割、单源最短路(easy+)
坦白的说这是一道水题,但是因为是BZOJ上的1001,所以这道题有着特殊的意义. 关于最大流转最短路的博客链接如下:关于最大流转最短路两三事 这道题的图形很规矩,所以建边和建点还是很简单的. 题目如下 ...
- BZOJ-1001 狼抓兔子 (最小割-最大流)平面图转对偶图+SPFA
1001: [BeiJing2006]狼抓兔子 Time Limit: 15 Sec Memory Limit: 162 MB Submit: 14686 Solved: 3513 [Submit][ ...
- 【转载】图论 500题——主要为hdu/poj/zoj
转自——http://blog.csdn.net/qwe20060514/article/details/8112550 =============================以下是最小生成树+并 ...
- 【HDOJ图论题集】【转】
=============================以下是最小生成树+并查集====================================== [HDU] How Many Table ...
- hdu图论题目分类
=============================以下是最小生成树+并查集====================================== [HDU] 1213 How Many ...
随机推荐
- 实现一个shell程序
实现一个自己的shell程序,这个程序有这些功能:解释执行命令,支持输入输出重定向,支持管道,后台运行 程序.当运行该程序后,它支持以下的命令格式: 1.单个命令,如:ls.2.带l到多个参数的命令, ...
- 09JavaScript函数
函数是由事件驱动的或者当它被调用时执行的可重复使用的代码块. 实例1: <!DOCTYPE html> <html> <head> <meta charset ...
- ACM 2000~2002
ACM 2000 输入三个字符后,按各个字符的ASCⅡ码从小打到的顺序输出这三个字符. import java.util.Scanner; public class Lengxc {public ...
- bootstrap-paginator分页插件的简单使用实例
Document 21:36:40 简述:bootstrap-paginator是一款基于bootstrap的jQuery分页插件. githup项目地址:https://github.com/lyo ...
- Centos7 Redis3.0 集群搭建备忘
(要让集群正常工作至少需要3个主节点,在这里我们要创建6个redis节点,其中三个为主节点,三个为从节点,对应的redis节点的ip和端口对应关系如下) 127.0.0.1:7000 127.0.0. ...
- 『Python基础-15』递归函数 Recursion Function
什么是递归函数 一种计算过程,如果其中每一步都要用到前一步或前几步的结果,称为递归的.用递归过程定义的函数,称为递归函数,例如连加.连乘及阶乘等.凡是递归的函数,都是可计算的,即能行的. 递归就是一个 ...
- fiddler响应报文的headers属性详解
fiddler响应报文的headers属性详解 (1)Cache头域 1. Cache-Control 在请求报文已经说过了,用于设置缓存的属性,浏览内容不被缓存. 2. Data 生成消息的具体时间 ...
- js分片上传大文件,前端代码
首先导入jQuery.form.js文件,下面src是相对于改js文件位置, <script type="text/JavaScript" src="jquery/ ...
- C#中如何使用JS脚本
C#中如何使用JS脚本 目前在做的组态软件中就使用到了js脚本,这部分js脚本是供用户编写的,用户可以通过我们提供的脚本以及js自身的逻辑,用户就可以随心所欲的控制设备的运行.有比较了几款在C#中执行 ...
- java入门---对象和类&概念详解&实例
Java作为一种面向对象语言.支持以下基本概念: 多态 继承 封装 抽象 类 对象 实例 方法 重载 这篇文章,我们主要来看下: 对象:对象是类的一个实例(对象不是找个女朋友),有状态 ...