题目传送门

Strange Towers of Hanoi

Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 3117   Accepted: 2004

Description

Background 
Charlie Darkbrown sits in another one of those boring Computer Science lessons: At the moment the teacher just explains the standard Tower of Hanoi problem, which bores Charlie to death! 

The teacher points to the blackboard (Fig. 4) and says: "So here is the problem:

  • There are three towers: A, B and C.
  • There are n disks. The number n is constant while working the puzzle.
  • All disks are different in size.
  • The disks are initially stacked on tower A increasing in size from the top to the bottom.
  • The goal of the puzzle is to transfer all of the disks from tower A to tower C.
  • One disk at a time can be moved from the top of a tower either to an empty tower or to a tower with a larger disk on the top.

So your task is to write a program that calculates the smallest number of disk moves necessary to move all the disks from tower A to C." 
Charlie: "This is incredibly boring—everybody knows that this can be solved using a simple recursion.I deny to code something as simple as this!" 
The teacher sighs: "Well, Charlie, let's think about something for you to do: For you there is a fourth tower D. Calculate the smallest number of disk moves to move all the disks from tower A to tower D using all four towers." 
Charlie looks irritated: "Urgh. . . Well, I don't know an optimal algorithm for four towers. . . " 
Problem 
So the real problem is that problem solving does not belong to the things Charlie is good at. Actually, the only thing Charlie is really good at is "sitting next to someone who can do the job". And now guess what — exactly! It is you who is sitting next to Charlie, and he is already glaring at you. 
Luckily, you know that the following algorithm works for n <= 12: At first k >= 1 disks on tower A are fixed and the remaining n-k disks are moved from tower A to tower B using the algorithm for four towers.Then the remaining k disks from tower A are moved to tower D using the algorithm for three towers. At last the n - k disks from tower B are moved to tower D again using the algorithm for four towers (and thereby not moving any of the k disks already on tower D). Do this for all k 2 ∈{1, .... , n} and find the k with the minimal number of moves. 
So for n = 3 and k = 2 you would first move 1 (3-2) disk from tower A to tower B using the algorithm for four towers (one move). Then you would move the remaining two disks from tower A to tower D using the algorithm for three towers (three moves). And the last step would be to move the disk from tower B to tower D using again the algorithm for four towers (another move). Thus the solution for n = 3 and k = 2 is 5 moves. To be sure that this really is the best solution for n = 3 you need to check the other possible values 1 and 3 for k. (But, by the way, 5 is optimal. . . )

Input

There is no input.

Output

For each n (1 <= n <= 12) print a single line containing the minimum number of moves to solve the problem for four towers and n disks.

Sample Input

No input.

Sample Output

REFER TO OUTPUT.


  分析:题目大意就是要求你解出n个盘子4座塔的Hanoi问题的最少步数,不需要输入,直接输出n为1-12的所有答案即可。我们知道,一般的三塔Hanoi问题的递推式是d[i]=d[i-1]*2+1,意思就是先将i-1个盘子放在第二个塔上,再把最后一个放在第三个塔上,再将i-1个盘子放在第三个塔上(如果这个不知道就自己去玩一下Hanoi),当然这种方法实质上是将i个盘子的问题先转化为i-1个盘子的问题。那么做这题就可以用类似的思维,先将i个盘子的四塔问题转化为j个盘子的三塔问题(0<=j<=i),令f[i]为i个盘子的四塔问题的答案,则f[i]=min(f[i],f[j]*2+d[i-j])。实际上也就等效于先做j个盘子的四塔问题,再做i-j个盘子的三塔问题,再做一次j个盘子的四塔问题。那么答案就很容易了。

  Code:

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<iostream>
#include<iomanip>
#include<algorithm>
#define Fi(i,a,b) for(int i=a;i<=b;i++)
using namespace std;
int d[],f[];
int main()
{
Fi(i,,)d[i]=d[i-]*+;memset(f,0x3f3f3f3f,sizeof(f));
f[]=;Fi(i,,)Fi(j,,i)f[i]=min(f[i],*f[j]+d[i-j]);
Fi(i,,)cout<<f[i]<<endl;return ;
}

POJ1958 Strange Towers of Hanoi [递推]的更多相关文章

  1. POJ-1958 Strange Towers of Hanoi(线性动规)

    Strange Towers of Hanoi Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 2677 Accepted: 17 ...

  2. poj1958——Strange Towers of Hanoi

    The teacher points to the blackboard (Fig. 4) and says: "So here is the problem: There are thre ...

  3. poj1958 strange towers of hanoi

    说是递推,其实也算是个DP吧. 就是4塔的汉诺塔问题. 考虑三塔:先从a挪n-1个到b,把最大的挪到c,然后再把n-1个从b挪到c,所以是 f[i] = 2 * f[i-1] + 1; 那么4塔类似: ...

  4. POJ 1958 Strange Towers of Hanoi 解题报告

    Strange Towers of Hanoi 大体意思是要求\(n\)盘4的的hanoi tower问题. 总所周知,\(n\)盘3塔有递推公式\(d[i]=dp[i-1]*2+1\) 令\(f[i ...

  5. POJ 1958 Strange Towers of Hanoi

    Strange Towers of Hanoi Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 3784 Accepted: 23 ...

  6. Strange Towers of Hanoi POJ - 1958(递推)

    题意:就是让你求出4个塔的汉诺塔的最小移动步数,(1 <= n <= 12) 那么我们知道3个塔的汉诺塔问题的解为:d[n] = 2*d[n-1] + 1 ,可以解释为把n-1个圆盘移动到 ...

  7. POJ1958:Strange Towers of Hanoi

    我对状态空间的理解:https://www.cnblogs.com/AKMer/p/9622590.html 题目传送门:http://poj.org/problem?id=1958 题目要我们求四柱 ...

  8. [POJ1958][Strange Tower of Hanoi]

    题目描述 求解 \(n\) 个盘子 \(4\) 座塔的 Hanoi 问题最少需要多少步 问题分析 考虑 \(3\) 座塔的 Hanoi 问题,记 \(f[i]\) 表示最少需要多少步, 则 \(f[i ...

  9. Strange Towers of Hanoi

    题目链接:http://sfxb.openjudge.cn/dongtaiguihua/E/ 题目描述:4个柱子的汉诺塔,求盘子个数n从1到12时,从A移到D所需的最大次数.限制条件和三个柱子的汉诺塔 ...

随机推荐

  1. rsync的命令参数【转】

    本篇文章,我们只介绍rsync的命令参数. rsync参数的具体解释如下: -v, –verbose 详细模式输出 -q, –quiet 精简输出模式 -c, –checksum 打开校验开关,强制对 ...

  2. 汕头市队赛SRM 20 T1魔法弹

    T1 背景 “主角光环已经不能忍啦!” 被最强控制AP博丽灵梦虐了很长一段时间之后,众人决定联合反抗. 魂魄妖梦:“野怪好像被抢光了?” 十六夜咲夜:“没事,我们人多.” 然后当然是以失败告终了. 八 ...

  3. 【BZOJ】1486 [HNOI2009]最小圈

    [算法]二分+spfa [题解]据说这个叫分数规划? 0-1分数规划 二分答案a,则对于任意的环有w/k≤a即w-ak≤0,若满足条件则a变小,否则a变大. 因为w=w1+w2+...+wk,所以变形 ...

  4. 复现VGG19训练自定义图像分类

    1.复现VGG训练自定义图像分类,成功了哈哈. 需要代码工程可联系博主qq号,在左边连接可找到. 核心代码: # coding:utf-8 import tensorflow as tf import ...

  5. java servlet jsp 导入boostrap css js

    1.在导入boostrap.css的时候注意了 一定要注意路径,你知道把js和css包放在servlet服务器的静态路径下面就是 lib 文件夹路径下,直接使用 lib/js/boostrap.css ...

  6. Linux简介——(一)

    1. 常见操作系统 - 服务端操作系统 : linux.unix.windows server - 单机操作系统 : windows(dos .ucdos.win95.win98.win2000.xp ...

  7. 结合BeautyEye开源UI框架实现的较美观的Java桌面程序

    BeautyJavaSwingRobot 结合BeautyEye开源UI框架实现的较美观的Java桌面程序,主要功能就是图灵机器人和一个2345网站万年历的抓取.... 挺简单而且实用的一个项目,实现 ...

  8. Python3安装Celery模块后执行Celery命令报错

    1 Python3安装Celery模块后执行Celery命令报错 pip3 install celery # 安装正常,但是执行celery 命令的时候提示没有_ssl模块什么的 手动在Python解 ...

  9. ES6 新增的一些东西

    一.常量 不允许重复定义 const a='HELLO' const a='world'//报错Uncaught SyntaxError: Identifier 'a' has already bee ...

  10. Windows10下配置Linux下C语言开发环境

    今天为大家介绍如在Windows10下配置Linux下C语言开发环境,首先安装linux子系统:启用开发者模式 1.打开设置 2.点击更新和安全3.点击开发者选项 4.启用开发人员模式 5.更改系统功 ...