一.Spark streaming Job 架构

SparkStreaming框架会自动启动Job并每隔BatchDuration时间会自动触发Job的调用。

Spark Streaming的Job 分为两大类:

  1. 每隔BatchInterval时间片就会产生的一个个Job,这里的Job并不是Spark Core中的Job,它只是基于DStreamGraph而生成的RDD的DAG而已;从Java角度讲相当于Runnable接口的实现类,要想运行Job需要将Job提交给JobScheduler,在JobScheduler内部会通过线程池的方式创建运行Job的一个个线程,当找到一个空闲的线程后会将Job提交到集群运行(其实是在线程中基于RDD的Action触发真正的作业的运行)。为什么使用线程池呢?

    a.Job根据BatchInterval不断生成,为了减少线程创建而带来的效率提升我们需要使用线程池(这和在Executor中通过启动线程池的方式来执行Task有异曲同工之妙);

    b.如果Job的运行设置为FAIR公平调度的方式,这个时候也需要多线程的支持;

  2. 上面Job提交的Spark Job本身。单从这个时刻来看,此次的Job和Spark core中的Job没有任何的区别。

理解Spark Streaming的Job的整个架构和运行机制对于精通Spark Streaming是至关重要的。

我们运行以下的程序,通过这个程序的运行过程进一步加深理解Spark Streaming流处理的Job的执行的过程,代码如下:

第一部分获取数据库连接代码:

import java.sql.Connection;
import java.sql.DriverManager;
import java.util.LinkedList;

public class ConnectionPool {

private static LinkedList<Connection> connectionQueue;

static {
try {
Class.forName("com.mysql.jdbc.Driver");
} catch (ClassNotFoundException e) {
e.printStackTrace();

}

public synchronized static Connection getConnection() {
try {
if(connectionQueue == null) {
connectionQueue = new LinkedList<Connection>();
for(int i = 0; i < 5; i++) {
Connection conn = DriverManager.getConnection(
"jdbc:mysql://Master:3306/sparkstreaming",
"root",
"778899..");
connectionQueue.push(conn); 
}
}
} catch (Exception e) {
e.printStackTrace();
}
return connectionQueue.poll();
}

public static void returnConnection(Connection conn) {
connectionQueue.push(conn); 
}
}

第二部分: 通过sparkstreaming 将网络产生的数据进行统计统计,并将结果写入mysql数据库

object OnlineForeachRDD2DB {

def main(args: Array[String]){

/**

* 第1步:创建Spark的配置对象SparkConf,设置Spark程序的运行时的配置信息,

* 例如说通过setMaster来设置程序要链接的Spark集群的Master的URL,如果设置

* 为local,则代表Spark程序在本地运行,特别适合于机器配置条件非常差(例如

* 只有1G的内存)的初学者

*/

val conf = new SparkConf() //创建SparkConf对象

conf.setAppName("OnlineForeachRDD") //设置应用程序的名称,在程序运行的监控界面可以看到名称

conf.setMaster("spark://Master:7077") //此时,程序在Spark集群

conf.setMaster("local[6]")

//设置batchDuration时间间隔来控制Job生成的频率并且创建Spark Streaming执行的入口

val ssc = new StreamingContext(conf, Seconds(5))

val lines = ssc.socketTextStream("Master", 9999)

val words = lines.flatMap(_.split(" "))

val wordCounts = words.map(x => (x, 1)).reduceByKey(_ + _)

wordCounts.foreachRDD{ rdd =>

rdd.foreachPartition{ partitionOfRecords => {

// ConnectionPool is a static, lazily initialized pool of connections

val connection = ConnectionPool.getConnection()

partitionOfRecords.foreach(record => {

val sql = "insert into streaming_itemcount(item,count) values('" + record._1 + "'," + record._2 + ")"

val stmt = connection.createStatement();

stmt.executeUpdate(sql);

})

ConnectionPool.returnConnection(connection)  // return to the pool for future reuse

}}

}

/**

*  在StreamingContext调用start方法的内部其实是会启动JobScheduler的Start方法,进行消息循环,

*  在JobScheduler的start内部会构造JobGenerator和ReceiverTacker,并且调用JobGenerator和

*  ReceiverTacker的start方法:

*  1,JobGenerator启动后会不断的根据batchDuration生成一个个的Job

*  2,ReceiverTracker启动后首先在Spark Cluster中启动Receiver(其实是在Executor中先启动

*  ReceiverSupervisor),在Receiver收到数据后会通过ReceiverSupervisor存储到Executor并且把

*  数据的Metadata信息发送给Driver中的ReceiverTracker,在ReceiverTracker内部会通过

*  ReceivedBlockTracker来管理接受到的元数据信息每个BatchInterval会产生一个具体的Job,

*  其实这里的Job不是Spark Core中所指的Job,它只是基于DStreamGraph而生成的RDD的DAG

*  而已,从Java角度讲,相当于Runnable接口实例,此时要想运行Job需要提交给JobScheduler,

*  在JobScheduler中通过线程池的方式找到一个单独的线程来提交Job到集群运行(其实是在线程中

*  基于RDD的Action触发真正的作业的运行),

*  为什么使用线程池呢?

*  1,作业不断生成,所以为了提升效率,我们需要线程池;这和在Executor中通过线程池执行Task

*  有异曲同工之妙;

*  2,有可能设置了Job的FAIR公平调度的方式,这个时候也需要多线程的支持。

*/

ssc.start()

ssc.awaitTermination()

}

}

代码中以注释的方式描述了Spakr job 启动的过程,下面结合源码做进一步分析

StreamingContext的start()方法:

/**
* Start the execution of the streams.
*
* @throws IllegalStateException if the StreamingContext is already stopped.
*/
def start(): Unit = synchronized {
state match {
case INITIALIZED =>
startSite.set(DStream.getCreationSite())
StreamingContext.ACTIVATION_LOCK.synchronized {
StreamingContext.assertNoOtherContextIsActive()
try {
validate() // Start the streaming scheduler in a new thread, so that thread local properties
// like call sites and job groups can be reset without affecting those of the
// current thread.
ThreadUtils.runInNewThread("streaming-start") {
sparkContext.setCallSite(startSite.get)
sparkContext.clearJobGroup()
sparkContext.setLocalProperty(SparkContext.SPARK_JOB_INTERRUPT_ON_CANCEL, "false")
savedProperties.set(SerializationUtils.clone(
sparkContext.localProperties.get()).asInstanceOf[Properties])
scheduler.start()
}
state = StreamingContextState.ACTIVE
} catch {
case NonFatal(e) =>
logError("Error starting the context, marking it as stopped", e)
scheduler.stop(false)
state = StreamingContextState.STOPPED
throw e
}
StreamingContext.setActiveContext(this)
}
shutdownHookRef = ShutdownHookManager.addShutdownHook(
StreamingContext.SHUTDOWN_HOOK_PRIORITY)(stopOnShutdown)
// Registering Streaming Metrics at the start of the StreamingContext
assert(env.metricsSystem != null)
env.metricsSystem.registerSource(streamingSource)
uiTab.foreach(_.attach())
logInfo("StreamingContext started")
case ACTIVE =>
logWarning("StreamingContext has already been started")
case STOPPED =>
throw new IllegalStateException("StreamingContext has already been stopped")
}
}

可以看到StreamingContext的start()的方法中调用了scheduler.start()(上述代码标红的部分),其scheduler 是JobScheduler的对象,该对象在StreamingContext创建是被实例化:

private[streaming] val scheduler = new JobScheduler(this)
接下来在JobScheduler.start()内部实例化EventLoop,并执行EventLoop.start()进行消息循环,在JobScheduler.start()内部构造ReceiverTacker,并且调用JobGenerator和ReceiverTacker的start方法:
def start(): Unit = synchronized {
if (eventLoop != null) return // scheduler has already been started logDebug("Starting JobScheduler")
eventLoop = new EventLoop[JobSchedulerEvent]("JobScheduler") {
override protected def onReceive(event: JobSchedulerEvent): Unit = processEvent(event) override protected def onError(e: Throwable): Unit = reportError("Error in job scheduler", e)
}
eventLoop.start() // attach rate controllers of input streams to receive batch completion updates
for {
inputDStream <- ssc.graph.getInputStreams
rateController <- inputDStream.rateController
} ssc.addStreamingListener(rateController) listenerBus.start()
receiverTracker = new ReceiverTracker(ssc)
inputInfoTracker = new InputInfoTracker(ssc)
executorAllocationManager = ExecutorAllocationManager.createIfEnabled(
ssc.sparkContext,
receiverTracker,
ssc.conf,
ssc.graph.batchDuration.milliseconds,
clock)
executorAllocationManager.foreach(ssc.addStreamingListener)
receiverTracker.start()
jobGenerator.start()
executorAllocationManager.foreach(_.start())
logInfo("Started JobScheduler")
}
JobGenerator的start()方法中会调用startFirstTime()方法和restart()方法
/** Start generation of jobs */
def start(): Unit = synchronized {
if (eventLoop != null) return // generator has already been started // Call checkpointWriter here to initialize it before eventLoop uses it to avoid a deadlock.
// See SPARK-10125
checkpointWriter eventLoop = new EventLoop[JobGeneratorEvent]("JobGenerator") {
override protected def onReceive(event: JobGeneratorEvent): Unit = processEvent(event) override protected def onError(e: Throwable): Unit = {
jobScheduler.reportError("Error in job generator", e)
}
}
eventLoop.start() if (ssc.isCheckpointPresent) {
restart()
} else {
startFirstTime()
}
}
最终调用generateJobs()方法不断生成job:
/** Generate jobs and perform checkpoint for the given `time`.  */
private def generateJobs(time: Time) {
// Checkpoint all RDDs marked for checkpointing to ensure their lineages are
// truncated periodically. Otherwise, we may run into stack overflows (SPARK-6847).
ssc.sparkContext.setLocalProperty(RDD.CHECKPOINT_ALL_MARKED_ANCESTORS, "true")
Try {
jobScheduler.receiverTracker.allocateBlocksToBatch(time) // allocate received blocks to batch
graph.generateJobs(time) // generate jobs using allocated block
} match {
case Success(jobs) =>
val streamIdToInputInfos = jobScheduler.inputInfoTracker.getInfo(time)
jobScheduler.submitJobSet(JobSet(time, jobs, streamIdToInputInfos))
case Failure(e) =>
jobScheduler.reportError("Error generating jobs for time " + time, e)
}
eventLoop.post(DoCheckpoint(time, clearCheckpointDataLater = false))
}
 

ReceiverTracker启动后首先在Spark Cluster中启动Receiver(其实是在Executor中先启动 ReceiverSupervisor),在Receiver收到数据后会通过ReceiverSupervisor存储到Executor并且把数据的Metadata信息发送给Driver中的ReceiverTracker,在ReceiverTracker内部会通过ReceivedBlockTracker来管理接受到的元数据信息.过程如图所示:

源码如下:(注意红色字体部分代码)
/** Start the endpoint and receiver execution thread. */
def start(): Unit = synchronized {
if (isTrackerStarted) {
throw new SparkException("ReceiverTracker already started")
} if (!receiverInputStreams.isEmpty) {
endpoint = ssc.env.rpcEnv.setupEndpoint(
"ReceiverTracker", new ReceiverTrackerEndpoint(ssc.env.rpcEnv))
if (!skipReceiverLaunch) launchReceivers()
logInfo("ReceiverTracker started")
trackerState = Started
}
}
每个BatchInterval会产生一个具体的Job,其实这里的Job不是Spark Core中所指的Job,它只是基于DStreamGraph而生成的RDD的DAG而已,从Java角度讲,相当于Runnable接口实例,此时要想运行Job需要提交给JobScheduler, 在JobScheduler中通过线程池的方式找到一个单独的线程来提交Job到集群运行(其实是在线程中 基于RDD的Action触发真正的作业的运行)

二 Spark Streaming Job容错架构和运行机制

Spark容错分为Driver级别的容错和Executor级别的容错。

- 在Driver级别的容错具体为DAG生成的模板,即DStreamGraph,RecevierTracker中存储的元数据信息和JobScheduler中存储的Job进行的进度情况等信息,只要通过checkpoint就可以了,每个Job生成之前进行checkpoint,在Job生成之后再进行checkpoint,如果出错的话就从checkpoint中恢复。

- 在Executor级别的容错具体为接收数据的安全性和任务执行的安全性。在接收数据安全性方面,一种方式是Spark Streaming接收到数据默认为MEMORY_AND_DISK_2的方式,在两台机器的内存中,如果一台机器上的Executor挂了,立即切换到另一台机器上的Executor,这种方式一般情况下非常可靠且没有切换时间。另外一种方式是WAL(Write Ahead Log),在数据到来时先通过WAL机制将数据进行日志记录,如果有问题则从日志记录中恢复,然后再把数据存到Executor中,再进行其他副本的复制。WAL这种方式对性能有影响,在生产环境中不常用,一般使用Kafka存储,Spark Streaming接收到数据丢失时可以从Kafka中回放。在任务执行的安全性方面,靠RDD的容错。

Spark Streaming的容错机制是基于RDD的容错机制。

主要表现为:

  1 checkpoint

  2 基于血统(lineage)的高度容错机制

  3 出错了之后会从出错的位置从新计算,而不会导致重复计算

备注:
   本博客部分内容源自王家林老师spak课程

3.spark streaming Job 架构和容错解析的更多相关文章

  1. 苏宁基于Spark Streaming的实时日志分析系统实践 Spark Streaming 在数据平台日志解析功能的应用

    https://mp.weixin.qq.com/s/KPTM02-ICt72_7ZdRZIHBA 苏宁基于Spark Streaming的实时日志分析系统实践 原创: AI+落地实践 AI前线 20 ...

  2. 大数据技术之_19_Spark学习_04_Spark Streaming 应用解析 + Spark Streaming 概述、运行、解析 + DStream 的输入、转换、输出 + 优化

    第1章 Spark Streaming 概述1.1 什么是 Spark Streaming1.2 为什么要学习 Spark Streaming1.3 Spark 与 Storm 的对比第2章 运行 S ...

  3. Spark Streaming揭秘 Day13 数据安全容错(Driver篇)

    Spark Streaming揭秘 Day13 数据安全容错(Driver篇) 书接上回,首先我们要考虑的是在Driver层面,有哪些东西需要维持状态,只有在需要维持状态的情况下才需要容错,总的来说, ...

  4. Spark Streaming揭秘 Day12 数据安全容错(Executor篇)

    Spark Streaming揭秘 Day12 数据安全容错(Executor篇) 今天,让我们研究下SparkStreaming在Executor端的数据安全及容错机制. 在SparkStreami ...

  5. Spark Streaming ReceiverTracker架构设计

    本节的主要内容: 一.ReceiverTracker的架构设计 二.消息循环系统 三.ReceiverTracker具体实现 Spark Streaming作为Spark Core基础 架构之上的一个 ...

  6. Spark Streaming 在数据平台日志解析功能的应用

    https://mp.weixin.qq.com/s/bGXhC9hvDj4lzK7wYYHGDg 目前,我们使用Filebeat监控日志产生的目录,收集产生的日志,打到logstash集群,接入ka ...

  7. 63、Spark Streaming:架构原理深度剖析

    一.架构原理深度剖析 StreamingContext初始化时,会创建一些内部的关键组件,DStreamGraph,ReceiverTracker,JobGenerator,JobScheduler, ...

  8. Spark Streaming之二:StreamingContext解析

    1.1 创建StreamingContext对象 1.1.1通过SparkContext创建 源码如下: def this(sparkContext: SparkContext, batchDurat ...

  9. 通过案例对 spark streaming 透彻理解三板斧之三:spark streaming运行机制与架构

    本期内容: 1. Spark Streaming Job架构与运行机制 2. Spark Streaming 容错架构与运行机制 事实上时间是不存在的,是由人的感官系统感觉时间的存在而已,是一种虚幻的 ...

随机推荐

  1. zjoi2018day2游记

    因为是在主场作战,所以就不需要东奔西跑了, 继一试爆炸以后,一个月来,感觉没有什么特别的进步,期间考了将近一个月的试, 每次如果拿应该拿的分的话,是不会太差的,但是从来没有发挥好过,就没有我认为正常过 ...

  2. 学习opencv-------函数使用二(图像变换)

    #include"cv.h" #include"highgui.h" using namespace cv; void CVFILTER2D(IplImage ...

  3. CMDB服务器管理系统【s5day88】:兼容的实现

    比较麻烦的实现方式 类的继承方式 目录结构如下: auto_client\bin\run.py import sys import os import importlib import request ...

  4. Java注释@interface的用法【转】 --好文章 很好理解

    java用  @interface Annotation{ } 定义一个注解 @Annotation,一个注解是一个类. @Override,@Deprecated,@SuppressWarnings ...

  5. c# “XXX::Invoke”类型的已垃圾回收委托进行了回调。这可能会导致应用程序崩溃、损坏和数据丢失。向非托管代码传递委托时,托管应用程序必须让这些委托保持活动状态,直到确信不会再次调用它们。

    症状描述如下: 如果将一个委托作为函数指针从托管代码封送到非托管代码,并且在对该委托进行垃圾回收后对该函数指针发出了一个回调,则将激活 callbackOnCollectedDelegate 托管调试 ...

  6. 转【jenkins插件】

    开源版本的Jenkins 具有三大能力:Master-Slave的分布式构建调度能力.Pipeline编排能力.强大的开源生态(插件)能力. 2017年4月,Jenkins创始人KK(Kohsuke ...

  7. rsync的命令参数【转】

    本篇文章,我们只介绍rsync的命令参数. rsync参数的具体解释如下: -v, –verbose 详细模式输出 -q, –quiet 精简输出模式 -c, –checksum 打开校验开关,强制对 ...

  8. mysql 创建视图

    1.单表创建视图 例如:创建一个选择语句,选出学生的编号,姓名和考号 //创建一个视图名字为stu_view1选择 来自数据表student中的id,name 和kn 中的数据 create view ...

  9. Android通知栏介绍与适配总结

    由于历史原因,Android在发布之初对通知栏Notification的设计相当简单,而如今面对各式各样的通知栏玩法,谷歌也不得不对其进行更新迭代调整,增加新功能的同时,也在不断地改变样式,试图迎合更 ...

  10. upupw注入by pass

    http:' and updatexml(null,concat(0x5c,(/*!00000select SCHEMA_name*/from/*!information_schema*/.schem ...