【模板】洛谷P3865

#include<cstdio>
#include<string>
#include<cstdlib>
#include<cmath>
#include<iostream>
#include<cstring>
#include<set>
#include<queue>
#include<algorithm>
#include<vector>
#include<map>
#include<cctype>
#include<stack>
#include<sstream>
#include<list>
#include<assert.h>
#include<bitset>
#include<numeric>
#define debug() puts("++++")
#define gcd(a,b) __gcd(a,b)
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define fi first
#define se second
#define pb push_back
#define sqr(x) ((x)*(x))
#define ms(a,b) memset(a,b,sizeof(a))
#define sz size()
#define be begin()
#define pu push_up
#define pd push_down
#define cl clear()
#define lowbit(x) -x&x
#define all 1,n,1
#define mod(x) ((x)%M)
#define pi acos(-1.0)
#define rep(i,x,n) for(int i=(x); i<(n); i++)
using namespace std;
typedef long long ll;
typedef unsigned long long ULL;
typedef pair<int,int> P;
const int INF = 0x3f3f3f3f;
const int maxn = 1e6+10;
const double eps = 1e-8;
const int dx[] = {-1,1,0,0,1,1,-1,-1};
const int dy[] = {0,0,1,-1,1,-1,1,-1};
int dir[2]={-1,1};
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const ll M = 2147493647;
int n,m,q,f[maxn][21];
int l,r;
void init()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
scanf("%d",&f[i][0]);
int up=(int)(log(n)/log(2));
for(int j=1;j<=up;j++)
{
for(int i=1;i+(1<<j)-1<=n;i++)
{
f[i][j]=max(f[i][j-1],f[i+(1<<(j-1))][j-1]);
}
}
while(m--)
{
scanf("%d%d",&l,&r);
int k=log2(r-l+1);
printf("%d\n",max(f[l][k],f[r-(1<<k)+1][k]));
}
}
int main()
{
init();
//printf("up=%d\n",(int)(log(n)/log(2)));
}

ST表算法笔记的更多相关文章

  1. ST表学习笔记

    ST表是一种利用DP思想求解最值的倍增算法 ST表常用于解决RMQ问题,即求解区间最值问题 接下来以求最大值为例分步讲解一下ST表的建立过程: 1.定义 f[i][j]表示[i,i+2j-1]这个长度 ...

  2. st表复习笔记

    st表,一种高效的区间最值查询(RMQ)算法.本质其实是一个动态规划. 其实吧,对于看过线性dp的人来说应该不难理解,只是处理有些麻烦.但是本土狗因为-1的问题居然改了许久... 用两个2^i的区间把 ...

  3. ST 表练习笔记

    P2048 [NOI2010]超级钢琴 首先按照 前缀和最大值 建立 \(ST\) 表 对于每一个 \(i\) 维护一个以他为起始点的最大的 "超级和弦" (\(ST\) 表 \( ...

  4. RMQ的st表算法

    此算法可用来处理区间最值问题,预处理时间为O(nlogn),查询时间为O(1) 此算法主要基于倍增思想,用以数组st[i][j]表示从第i个元素开始向后搜2的j次方的最值 可用递推的方式求得:st[i ...

  5. S-T表学习笔记

    $O(nlogn)$构造$O(1)$查询真是太强辣 然而不支持修改= = ShØut! #include<iostream> #include<cstring> #includ ...

  6. ST表

    ST表的原理及其实现 ST表类似树状数组,线段树这两种算法,是一种用于解决RMQ(Range Minimum/Maximum Query,即区间最值查询)问题的离线算法 与线段树相比,预处理复杂度同为 ...

  7. 【算法学习笔记】RMQ问题与ST表

    \(0.\) RMQ问题 P1816 人话翻译 给定一个长度为\(n\)的数列\(a\),然后有\(m\)组询问,每次询问一个区间\([l,r]\)的最小值. 其中\(m,n\leq10^5\) \( ...

  8. 【笔记】自学ST表笔记

    自学ST表笔记 说实话原先QBXT学的ST表忘的差不多了吧...... 我重新自学巩固一下(回忆一下) 顺便把原先一些思想来源的原博发上来 一.ST表简介 ST表,建表时间\(O(n\cdot log ...

  9. LCA 算法(一)ST表

    介绍一种解决最近公共祖先的在线算法,st表,它是建立在线性中的rmq问题之上.   代码:   //LCA: DFS+ST(RMQ) #include<cstdio> #include&l ...

随机推荐

  1. 解决配置JAVA_HOME JDK版本不变的问题

    解决方案:修改环境变量Path 因为PATH环境变量中默认将system32等系统重要目录添加在最前面,所以运行java -version时当然是调用system32目录下的java.exe了. 所以 ...

  2. 【51NOD-0】1011 最大公约数GCD

    [算法]欧几里德算法 #include<cstdio> int gcd(int a,int b) {?a:gcd(b,a%b);} int main() { int a,b; scanf( ...

  3. nginx与php-fpm通讯方式

    nginx和php-fpm的通信方式有两种,一种是tcp socket的方式,一种是unix socke方式. tcp sockettcp socket的优点是可以跨服务器,当nginx和php-fp ...

  4. Calendar Provider

    英文原文:http://developer.android.com/guide/topics/providers/calendar-provider.html 关键类 CalendarContract ...

  5. Fermat2018游记

    day (-22) 2018年2月5日 Devin大佬给我发了一份Waterloo AIF的原件截图,发现里面居然直接问你的Fermat分数,那么这么重要的考试当然不能错过啊 若干天之后刚开学不久的一 ...

  6. 父元素与子元素之间的margin-top问题(css hack)

    hack: 父元素的盒子包含一个子元素盒子,给子元素盒子一个垂直外边距margin-top,父元素盒子也会往下走margin-top的值,而子元素和父元素的边距则没有发生变化. hytml代码: &l ...

  7. php中使用static方法

    <?php class Char{ public static $number = 0; public static $name; function __construct($what){ se ...

  8. Ubuntu 14.04 安装gstreamer0.10-ffmpeg

    sudo apt-add-repository ppa:mc3man/trusty-media sudo apt-get update sudo apt-get install -y gstreame ...

  9. mac10.9下安装Android

    这里记录一下mac下安装android比较快捷的方法 首先,到这里下载Android SDK,这个是集成的,所有工具一应俱全,免去了下载一堆东西的烦恼.具体包括如下: Eclipse + ADT pl ...

  10. 转载: GIt远程操作详解

    Git远程操作详解   作者: 阮一峰 日期: 2014年6月12日 Git是目前最流行的版本管理系统,学会Git几乎成了开发者的必备技能. Git有很多优势,其中之一就是远程操作非常简便.本文详细介 ...