1. Softmax回归K分类问题, 2分类的logistic回归的推广。其概率表示为:

对于一般训练集:

    

    

    

    

系统参数为:

    

  1. Softmax回归Logistic回归的关系

当Softmax回归用于2分类问题,那么可以得到:

    

θ=θ0-θ1,就得到了logistic回归。所以实际上logistic回归虽然有2个参数向量,但这2个参数向量可以退化到1个参数向量。推广到K个类别,那么就需要K-1个参数向量

  1. 参数求解

类似于logistic regression,求最大似然概率,有:

    

其中1{k=y}为真值表达式,例如如果1{1+1=2},那么值为1,如果1{1+1=0},那么值为0。对数似然函数有:

    

上式中,仅有,所以有:

    

对上式求导数

    

    

Softmax回归(Softmax Regression, K分类问题)的更多相关文章

  1. Softmax回归 softMax回归与logistic回归的关系

    简介 在本节中,我们介绍Softmax回归模型,该模型是logistic回归模型在多分类问题上的推广,在多分类问题中,类标签  可以取两个以上的值. Softmax回归模型对于诸如MNIST手写数字分 ...

  2. 《转》Logistic回归 多分类问题的推广算法--Softmax回归

    转自http://ufldl.stanford.edu/wiki/index.php/Softmax%E5%9B%9E%E5%BD%92 简介 在本节中,我们介绍Softmax回归模型,该模型是log ...

  3. 逻辑回归,多分类推广算法softmax回归中

    转自http://ufldl.stanford.edu/wiki/index.php/Softmax%E5%9B%9E%E5%BD%92 简介 在本节中,我们介绍Softmax回归模型,该模型是log ...

  4. 【机器学习】Softmax 和Logistic Regression回归Sigmod

    二分类问题Sigmod 在 logistic 回归中,我们的训练集由  个已标记的样本构成: ,其中输入特征.(我们对符号的约定如下:特征向量  的维度为 ,其中  对应截距项 .) 由于 logis ...

  5. 《动手学深度学习》系列笔记—— 1.2 Softmax回归与分类模型

    目录 softmax的基本概念 交叉熵损失函数 模型训练和预测 获取Fashion-MNIST训练集和读取数据 get dataset softmax从零开始的实现 获取训练集数据和测试集数据 模型参 ...

  6. Machine Learning 学习笔记 (3) —— 泊松回归与Softmax回归

    本系列文章允许转载,转载请保留全文! [请先阅读][说明&总目录]http://www.cnblogs.com/tbcaaa8/p/4415055.html 1. 泊松回归 (Poisson ...

  7. Softmax回归

    Reference: http://ufldl.stanford.edu/wiki/index.php/Softmax_regression http://deeplearning.net/tutor ...

  8. 机器学习 —— 基础整理(五)线性回归;二项Logistic回归;Softmax回归及其梯度推导;广义线性模型

    本文简单整理了以下内容: (一)线性回归 (二)二分类:二项Logistic回归 (三)多分类:Softmax回归 (四)广义线性模型 闲话:二项Logistic回归是我去年入门机器学习时学的第一个模 ...

  9. logistic回归和softmax回归

    logistic回归 在 logistic 回归中,我们的训练集由  个已标记的样本构成:.由于 logistic 回归是针对二分类问题的,因此类标记 . 假设函数(hypothesis functi ...

随机推荐

  1. MongoDB 学习(一)安装配置和简单应用

    一.安装和部署 1.服务端安装 1.官网下载(官方网站 https://www.mongodb.org/downloads/#production),傻瓜式安装,注意修改安装路径. 安装完成后的目录结 ...

  2. javascript之Array()数组函数讲解

    Array()是一个用来构建数组的内建构造器函数.数组主要由如下三种创建方式: array = new Array() array = new Array([size]) array = new Ar ...

  3. 缓存与DB数据一致性问题解决的几个思路

    使用缓存必然会碰到缓存跟真实数据不一致的问题,虽然我们会在数据发生变化时通知缓存,但是这个延迟时间内必然会导致数据不一致,如何解决一般有下面几个思路: 首先,当这个延迟如果在业务上时可以接受的,比如文 ...

  4. 【原创】MapReduce程序如何在集群上执行

    首先了解下资源调度管理框架Yarn. Yarn的结构(如图): Resource Manager (rm)负责调度管理整个集群上的资源,而每一个计算节点上都会有一个Node Manager(nm)来负 ...

  5. 使用Calendar加一天,减一天

    public class Test { public static void main(String[] args) { Calendar c=Calendar.getInstance(); Simp ...

  6. js基本数据类型和引用类型的区别详解-笔记

    原文参考http://mp.weixin.qq.com/s/apFyUgqT5N-bsDUjP4Eryg 笔记总结 首先记住js中的基础数据类型undefined,null,boolean,strin ...

  7. Java基础知识错误分析

    答案:A,C 解析: 题目2: 答案:B 解析: 题目3: 答案:A 解析: 题目4: 答案:D 解析: 题目5: 答案:C 题目六: 答案:C 解析:

  8. 轻松看懂机器学习十大常用算法 (Machine Learning Top 10 Commonly Used Algorithms)

    原文出处: 不会停的蜗牛    通过本篇文章可以对ML的常用算法有个常识性的认识,没有代码,没有复杂的理论推导,就是图解一下,知道这些算法是什么,它们是怎么应用的,例子主要是分类问题. 每个算法都看了 ...

  9. 04_dubbo_ioc

    [dubbo的IOC实现方法] dubbo的IOC具体实现在:T injectExtension( T instance )方法中,该方法在3个地方被使用: ExtensionLoader.getEx ...

  10. 使用SlidingPaneLayout 实现仿微信的滑动返回

    上周,公司的项目改版要求加上一个右滑返回上一个界面,于是就在网上找了一些开源库打算实现.但是在使用的时候遇见了许多的问题.试了两天用过 https://github.com/ikew0ng/Swipe ...