const int N = 33 * 1024;
const int threadsPerBlock = 256;
const int blocksPerGrid =
imin( 32, (N+threadsPerBlock-1) / threadsPerBlock ); __global__ void dot( float *a, float *b, float *c ) {
__shared__ float cache[threadsPerBlock];
int tid = threadIdx.x + blockIdx.x * blockDim.x;
int cacheIndex = threadIdx.x; float temp = 0;
while (tid < N) {
temp += a[tid] * b[tid];
tid += blockDim.x * gridDim.x;
} // set the cache values
cache[cacheIndex] = temp; // synchronize threads in this block
__syncthreads(); // for reductions, threadsPerBlock must be a power of 2
// because of the following code
int i = blockDim.x/2;
while (i != 0) {
if (cacheIndex < i)
cache[cacheIndex] += cache[cacheIndex + i];
__syncthreads();
i /= 2;
} if (cacheIndex == 0)
c[blockIdx.x] = cache[0];
} int main( void ) {
float *a, *b, c, *partial_c;
float *dev_a, *dev_b, *dev_partial_c; // allocate memory on the cpu side
a = (float*)malloc( N*sizeof(float) );
b = (float*)malloc( N*sizeof(float) );
partial_c = (float*)malloc( blocksPerGrid*sizeof(float) ); // allocate the memory on the GPU
HANDLE_ERROR( cudaMalloc( (void**)&dev_a,
N*sizeof(float) ) );
HANDLE_ERROR( cudaMalloc( (void**)&dev_b,
N*sizeof(float) ) );
HANDLE_ERROR( cudaMalloc( (void**)&dev_partial_c,
blocksPerGrid*sizeof(float) ) ); // fill in the host memory with data
for (int i=0; i<N; i++) {
a[i] = i;
b[i] = i*2;
} // copy the arrays 'a' and 'b' to the GPU
HANDLE_ERROR( cudaMemcpy( dev_a, a, N*sizeof(float),
cudaMemcpyHostToDevice ) );
HANDLE_ERROR( cudaMemcpy( dev_b, b, N*sizeof(float),
cudaMemcpyHostToDevice ) ); dot<<<blocksPerGrid,threadsPerBlock>>>( dev_a, dev_b,
dev_partial_c ); // copy the array 'c' back from the GPU to the CPU
HANDLE_ERROR( cudaMemcpy( partial_c, dev_partial_c,
blocksPerGrid*sizeof(float),
cudaMemcpyDeviceToHost ) ); // finish up on the CPU side
c = 0;
for (int i=0; i<blocksPerGrid; i++) {
c += partial_c[i];
} #define sum_squares(x) (x*(x+1)*(2*x+1)/6)
printf( "Does GPU value %.6g = %.6g?\n", c,
2 * sum_squares( (float)(N - 1) ) ); // free memory on the gpu side
HANDLE_ERROR( cudaFree( dev_a ) );
HANDLE_ERROR( cudaFree( dev_b ) );
HANDLE_ERROR( cudaFree( dev_partial_c ) ); // free memory on the cpu side
free( a );
free( b );
free( partial_c );
}

struct Lock {
int *mutex;
Lock( void ) {
HANDLE_ERROR( cudaMalloc( (void**)&mutex,sizeof(int) ) );
HANDLE_ERROR( cudaMemset( mutex, 0, sizeof(int) ) );
}
~Lock( void ) {
cudaFree( mutex );
}
__device__ void lock( void ) {
while( atomicCAS( mutex, 0, 1 ) != 0 );
}
__device__ void unlock( void ) {
atomicExch( mutex, 0 );
}
};
#define imin(a,b) (a<b?a:b)

const int N = 33 * 1024 * 1024;
const int threadsPerBlock = 256;
const int blocksPerGrid =
imin( 32, (N+threadsPerBlock-1) / threadsPerBlock ); __global__ void dot( Lock lock, float *a,
float *b, float *c ) {
__shared__ float cache[threadsPerBlock];
int tid = threadIdx.x + blockIdx.x * blockDim.x;
int cacheIndex = threadIdx.x; float temp = 0;
while (tid < N) {
temp += a[tid] * b[tid];
tid += blockDim.x * gridDim.x;
} // set the cache values
cache[cacheIndex] = temp; // synchronize threads in this block
__syncthreads(); // for reductions, threadsPerBlock must be a power of 2
// because of the following code
int i = blockDim.x/2;
while (i != 0) {
if (cacheIndex < i)
cache[cacheIndex] += cache[cacheIndex + i];
__syncthreads();
i /= 2;
} if (cacheIndex == 0) {
// wait until we get the lock
lock.lock();
// we have the lock at this point, update and release
*c += cache[0];
lock.unlock();
}
} int main( void ) {
float *a, *b, c = 0;
float *dev_a, *dev_b, *dev_c; // allocate memory on the cpu side
a = (float*)malloc( N*sizeof(float) );
b = (float*)malloc( N*sizeof(float) ); // allocate the memory on the GPU
HANDLE_ERROR( cudaMalloc( (void**)&dev_a,
N*sizeof(float) ) );
HANDLE_ERROR( cudaMalloc( (void**)&dev_b,
N*sizeof(float) ) );
HANDLE_ERROR( cudaMalloc( (void**)&dev_c,
sizeof(float) ) ); // fill in the host memory with data
for (int i=0; i<N; i++) {
a[i] = i;
b[i] = i*2;
} // copy the arrays 'a' and 'b' to the GPU
HANDLE_ERROR( cudaMemcpy( dev_a, a, N*sizeof(float),
cudaMemcpyHostToDevice ) );
HANDLE_ERROR( cudaMemcpy( dev_b, b, N*sizeof(float),
cudaMemcpyHostToDevice ) );
HANDLE_ERROR( cudaMemcpy( dev_c, &c, sizeof(float),
cudaMemcpyHostToDevice ) ); Lock lock;
dot<<<blocksPerGrid,threadsPerBlock>>>( lock, dev_a,
dev_b, dev_c ); // copy c back from the GPU to the CPU
HANDLE_ERROR( cudaMemcpy( &c, dev_c,
sizeof(float),
cudaMemcpyDeviceToHost ) ); #define sum_squares(x) (x*(x+1)*(2*x+1)/6)
printf( "Does GPU value %.6g = %.6g?\n", c,
2 * sum_squares( (float)(N - 1) ) ); // free memory on the gpu side
HANDLE_ERROR( cudaFree( dev_a ) );
HANDLE_ERROR( cudaFree( dev_b ) );
HANDLE_ERROR( cudaFree( dev_c ) ); // free memory on the cpu side
free( a );
free( b );
}

__global__ void histo_kernel( unsigned char *buffer,
long size,
unsigned int *histo ) {
// calculate the starting index and the offset to the next
// block that each thread will be processing
int i = threadIdx.x + blockIdx.x * blockDim.x;
int stride = blockDim.x * gridDim.x;
while (i < size) {
atomicAdd( &histo[buffer[i]], 1 );
i += stride;
}
} int main( void ) {
unsigned char *buffer =
(unsigned char*)big_random_block( SIZE ); // capture the start time
// starting the timer here so that we include the cost of
// all of the operations on the GPU.
cudaEvent_t start, stop;
HANDLE_ERROR( cudaEventCreate( &start ) );
HANDLE_ERROR( cudaEventCreate( &stop ) );
HANDLE_ERROR( cudaEventRecord( start, 0 ) ); // allocate memory on the GPU for the file's data
unsigned char *dev_buffer;
unsigned int *dev_histo;
HANDLE_ERROR( cudaMalloc( (void**)&dev_buffer, SIZE ) );
HANDLE_ERROR( cudaMemcpy( dev_buffer, buffer, SIZE,
cudaMemcpyHostToDevice ) ); HANDLE_ERROR( cudaMalloc( (void**)&dev_histo,
256 * sizeof( int ) ) );
HANDLE_ERROR( cudaMemset( dev_histo, 0,
256 * sizeof( int ) ) ); // kernel launch - 2x the number of mps gave best timing
cudaDeviceProp prop;
HANDLE_ERROR( cudaGetDeviceProperties( &prop, 0 ) );
int blocks = prop.multiProcessorCount;
histo_kernel<<<blocks*2,256>>>( dev_buffer, SIZE, dev_histo ); unsigned int histo[256];
HANDLE_ERROR( cudaMemcpy( histo, dev_histo,
256 * sizeof( int ),
cudaMemcpyDeviceToHost ) ); // get stop time, and display the timing results
HANDLE_ERROR( cudaEventRecord( stop, 0 ) );
HANDLE_ERROR( cudaEventSynchronize( stop ) );
float elapsedTime;
HANDLE_ERROR( cudaEventElapsedTime( &elapsedTime,
start, stop ) );
printf( "Time to generate: %3.1f ms\n", elapsedTime ); long histoCount = 0;
for (int i=0; i<256; i++) {
histoCount += histo[i];
}
printf( "Histogram Sum: %ld\n", histoCount ); // verify that we have the same counts via CPU
for (int i=0; i<SIZE; i++)
histo[buffer[i]]--;
for (int i=0; i<256; i++) {
if (histo[i] != 0)
printf( "Failure at %d! Off by %d\n", i, histo[i] );
} HANDLE_ERROR( cudaEventDestroy( start ) );
HANDLE_ERROR( cudaEventDestroy( stop ) );
cudaFree( dev_histo );
cudaFree( dev_buffer );
free( buffer );
return 0;
}

__global__ void histo_kernel( unsigned char *buffer,
long size,
unsigned int *histo ) { // clear out the accumulation buffer called temp
// since we are launched with 256 threads, it is easy
// to clear that memory with one write per thread
__shared__ unsigned int temp[256];
temp[threadIdx.x] = 0;
__syncthreads(); // calculate the starting index and the offset to the next
// block that each thread will be processing
int i = threadIdx.x + blockIdx.x * blockDim.x;
int stride = blockDim.x * gridDim.x;
while (i < size) {
atomicAdd( &temp[buffer[i]], 1 );
i += stride;
}
// sync the data from the above writes to shared memory
// then add the shared memory values to the values from
// the other thread blocks using global memory
// atomic adds
// same as before, since we have 256 threads, updating the
// global histogram is just one write per thread!
__syncthreads();
atomicAdd( &(histo[threadIdx.x]), temp[threadIdx.x] );
} int main( void ) {
unsigned char *buffer =
(unsigned char*)big_random_block( SIZE ); // capture the start time
// starting the timer here so that we include the cost of
// all of the operations on the GPU. if the data were
// already on the GPU and we just timed the kernel
// the timing would drop from 74 ms to 15 ms. Very fast.
cudaEvent_t start, stop;
HANDLE_ERROR( cudaEventCreate( &start ) );
HANDLE_ERROR( cudaEventCreate( &stop ) );
HANDLE_ERROR( cudaEventRecord( start, 0 ) ); // allocate memory on the GPU for the file's data
unsigned char *dev_buffer;
unsigned int *dev_histo;
HANDLE_ERROR( cudaMalloc( (void**)&dev_buffer, SIZE ) );
HANDLE_ERROR( cudaMemcpy( dev_buffer, buffer, SIZE,
cudaMemcpyHostToDevice ) ); HANDLE_ERROR( cudaMalloc( (void**)&dev_histo,
256 * sizeof( int ) ) );
HANDLE_ERROR( cudaMemset( dev_histo, 0,
256 * sizeof( int ) ) ); // kernel launch - 2x the number of mps gave best timing
cudaDeviceProp prop;
HANDLE_ERROR( cudaGetDeviceProperties( &prop, 0 ) );
int blocks = prop.multiProcessorCount;
histo_kernel<<<blocks*2,256>>>( dev_buffer,
SIZE, dev_histo ); unsigned int histo[256];
HANDLE_ERROR( cudaMemcpy( histo, dev_histo,
256 * sizeof( int ),
cudaMemcpyDeviceToHost ) ); // get stop time, and display the timing results
HANDLE_ERROR( cudaEventRecord( stop, 0 ) );
HANDLE_ERROR( cudaEventSynchronize( stop ) );
float elapsedTime;
HANDLE_ERROR( cudaEventElapsedTime( &elapsedTime,
start, stop ) );
printf( "Time to generate: %3.1f ms\n", elapsedTime ); long histoCount = 0;
for (int i=0; i<256; i++) {
histoCount += histo[i];
}
printf( "Histogram Sum: %ld\n", histoCount ); // verify that we have the same counts via CPU
for (int i=0; i<SIZE; i++)
histo[buffer[i]]--;
for (int i=0; i<256; i++) {
if (histo[i] != 0)
printf( "Failure at %d!\n", i );
} HANDLE_ERROR( cudaEventDestroy( start ) );
HANDLE_ERROR( cudaEventDestroy( stop ) );
cudaFree( dev_histo );
cudaFree( dev_buffer );
free( buffer );
return 0;
}

注:本文是作者对GPU高性能编程CUDA实战的学习总结。此书的代码可以在下面的链接下载,无需积分哦!

http://download.csdn.net/detail/celerychen2009/6360573

CUDA编程札记的更多相关文章

  1. 不同版本CUDA编程的问题

    1 无法装上CUDA的toolkit 卸载所有的NVIDIA相关的app,包括NVIDIA的显卡驱动,然后重装. 2之前的文件打不开,one or more projects in the solut ...

  2. cuda编程基础

    转自: http://blog.csdn.net/augusdi/article/details/12529247 CUDA编程模型 CUDA编程模型将CPU作为主机,GPU作为协处理器(co-pro ...

  3. CUDA学习笔记(一)——CUDA编程模型

    转自:http://blog.sina.com.cn/s/blog_48b9e1f90100fm56.html CUDA的代码分成两部分,一部分在host(CPU)上运行,是普通的C代码:另一部分在d ...

  4. CUDA编程

    目录: 1.什么是CUDA 2.为什么要用到CUDA 3.CUDA环境搭建 4.第一个CUDA程序 5. CUDA编程 5.1. 基本概念 5.2. 线程层次结构 5.3. 存储器层次结构 5.4. ...

  5. CUDA编程-(1)Tesla服务器Kepler架构和万年的HelloWorld

    结合CUDA范例精解以及CUDA并行编程.由于正在学习CUDA,CUDA用的比较多,因此翻译一些个人认为重点的章节和句子,作为学习,程序将通过NVIDIA K40服务器得出结果.如果想通过本书进行CU ...

  6. cuda编程(一)

    环境安装和例程运行 显卡主要有两家,ATI.NVIDIA,简称A卡和N卡.随着GPU计算能力的上升,采用GPU并行计算来加速的应用越来越多. Nvidia创立人之一,黄仁勋(Jen-Hsun Huan ...

  7. CUDA编程入门,Dim3变量

    dim3是NVIDIA的CUDA编程中一种自定义的整型向量类型,基于用于指定维度的uint3. 例如:dim3 grid(num1,num2,num3): dim3类型最终设置的是一个三维向量,三维参 ...

  8. CUDA编程(六)进一步并行

    CUDA编程(六) 进一步并行 在之前我们使用Thread完毕了简单的并行加速,尽管我们的程序运行速度有了50甚至上百倍的提升,可是依据内存带宽来评估的话我们的程序还远远不够.在上一篇博客中给大家介绍 ...

  9. CUDA编程模型之内存管理

    CUDA编程模型假设系统是由一个主机和一个设备组成的,而且各自拥有独立的内存. 主机:CPU及其内存(主机内存),主机内存中的变量名以h_为前缀,主机代码按照ANSI C标准进行编写 设备:GPU及其 ...

随机推荐

  1. 六十三 、异步IO

    在IO编程一节中,我们已经知道,CPU的速度远远快于磁盘.网络等IO.在一个线程中,CPU执行代码的速度极快,然而,一旦遇到IO操作,如读写文件.发送网络数据时,就需要等待IO操作完成,才能继续进行下 ...

  2. 转:nginx+CGI/FASTCGI

    简介版: 1.fastcgi与cgi区别:fastcgi通过线程来响应请求,而cgi对每个请求生成一个进程. 2.典型nginx数据传输过程:user->nginx->本地socket(请 ...

  3. 转:Apache+Fastcgi+Django

    07年作者就贴出的文章了,可见多么古老的运行方式还在用. 转:http://www.cnblogs.com/RChen/archive/2007/03/23/django_fcgi.html 首先要安 ...

  4. 【C++】基础及引用

    输出 #include "iostream" //包含c++的头文件 //iostream.h using namespace std; //使用命名空间 std 标准的命名空间 ...

  5. 读书笔记(高性能javascript)(一)

    1.加载与执行: (1)将脚本放在底部:(否则会阻塞) (2)由于每个<script>标签初始下载时都会阻塞页面渲染,所以减少页面包含的<script>标签数量有助于改善这一情 ...

  6. Codeforces Beta Round #14 (Div. 2) Two Paths (树形DP)

    Two Paths time limit per test 2 seconds memory limit per test 64 megabytes input standard input outp ...

  7. oracle中 char,varchar,varchar2的区别

    区别:      1. CHAR的长度是固定的,而VARCHAR2的长度是可以变化的, 比如,存储字符串“abc",对于CHAR (20),表示你存储的字符将占20个字节(包括17个空字符) ...

  8. Linux基础系列-Day4

    top系统监控 top命令可以实时动态地查看系统的整体运行情况,是一个综合了多方信息监测系统性能和运行信息的实用工具.通过top命令所提供的互动式界面,用热键可以管理. [root@centos-py ...

  9. 【BZOJ 4567】【SCOI 2016】背单词

    http://www.lydsy.com/JudgeOnline/problem.php?id=4567 贪心. 任何不用第一种情况的方案吃的泡椒数都小于\(n^2\),所以最小泡椒数的方案一定不包含 ...

  10. Codeforces 555 C. Case of Chocolate

    \(>Codeforces \space 555 C. Case of Chocolate<\) 题目大意 : 有一块 \(n \times n\) 的倒三角的巧克力,有一个人要吃 \(q ...