链接:



Frogger
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 21206   Accepted: 6903

Description

Freddy Frog is sitting on a stone in the middle of a lake. Suddenly he notices Fiona Frog who is sitting on another stone. He plans to visit her, but since the water is dirty and full of tourists' sunscreen, he wants to avoid swimming and instead reach her
by jumping. 

Unfortunately Fiona's stone is out of his jump range. Therefore Freddy considers to use other stones as intermediate stops and reach her by a sequence of several small jumps. 

To execute a given sequence of jumps, a frog's jump range obviously must be at least as long as the longest jump occuring in the sequence. 

The frog distance (humans also call it minimax distance) between two stones therefore is defined as the minimum necessary jump range over all possible paths between the two stones. 



You are given the coordinates of Freddy's stone, Fiona's stone and all other stones in the lake. Your job is to compute the frog distance between Freddy's and Fiona's stone. 

Input

The input will contain one or more test cases. The first line of each test case will contain the number of stones n (2<=n<=200). The next n lines each contain two integers xi,yi (0 <= xi,yi <= 1000) representing the coordinates of stone #i. Stone #1 is Freddy's
stone, stone #2 is Fiona's stone, the other n-2 stones are unoccupied. There's a blank line following each test case. Input is terminated by a value of zero (0) for n.

Output

For each test case, print a line saying "Scenario #x" and a line saying "Frog Distance = y" where x is replaced by the test case number (they are numbered from 1) and y is replaced by the appropriate real number, printed to three decimals. Put a blank line
after each test case, even after the last one.

Sample Input

2
0 0
3 4 3
17 4
19 4
18 5 0

Sample Output

Scenario #1
Frog Distance = 5.000 Scenario #2
Frog Distance = 1.414

Source




题意:


       给出一个无向图,求一条1~2的路径使得路径上的最大边权最小.

算法:

floyd 变形或者 Dijkstra 变形都可以

分析:

        floyd变形,将更新距离的过程改为取最大值即可.
        w[i][j] = min(w[i][j], max(w[i][k], w[k][j]))


PS:

    这道题不像其它的最短路,是求总路径最小,而是不管总路径,只要保证路径上的最大边权在所有可以走的路径中最小就可以了所以要遍历每一条路径了Orz 如果用 Dijkstra 写有点像 Prim

code:

floyd:

/*
题意:给出一个无向图,求一条1~2的路径使得路径上的最大边权最小. 分析:floyd变形,将更新距离的过程改为取最大值即可.
*/
#include<stdio.h>
#include<math.h>
#include<string.h>
#include<algorithm>
using namespace std; const double DNF = 2000;
const int maxn = 210; double w[maxn][maxn];
int n; struct Point{
double x,y;
}p[maxn]; double dist(Point a, Point b)
{
return sqrt((a.x-b.x)*(a.x-b.x) + (a.y-b.y)*(a.y-b.y));
} void floyd()
{
for(int k = 1; k <= n; k++)
for(int i = 1; i <= n; i++)
for(int j = 1; j <= n; j++)
w[i][j] = min(w[i][j], max(w[i][k], w[k][j])); //更新i——j路径上最小的最大边权
} int main()
{
int kcase = 0;
while(scanf("%d", &n) != EOF)
{
if(n == 0) break;
for(int i = 1; i <= n; i++)
{
scanf("%lf%lf", &p[i].x, &p[i].y);
} for(int i = 1; i <= n; i++)
{
w[i][i] = 0;
for(int j = i+1; j <= n; j++)
{
w[i][j] = dist(p[i],p[j]);
w[j][i] = dist(p[i],p[j]);
}
} floyd();
printf("Scenario #%d\n", ++kcase);
printf("Frog Distance = %.3lf\n\n", w[1][2]);
}
}

Dijkstra:


/*
题意:给出一个无向图,求一条1~2的路径使得路径上的最大边权最小. 分析:dijkstra变形,将更新距离的过程改为取最大值即可.
*/
#include<stdio.h>
#include<math.h>
#include<string.h>
#include<algorithm>
using namespace std; const double DNF = 2000;
const int maxn = 210; double w[maxn][maxn];
double d[maxn];
int vis[maxn];
int n;
double ans; struct Point{
double x,y;
}p[maxn]; double dist(Point a, Point b)
{
return sqrt((a.x-b.x)*(a.x-b.x) + (a.y-b.y)*(a.y-b.y));
} void Dijkstra()
{
for(int i = 1; i <= n; i++) d[i] = DNF;
d[1] = 0;
memset(vis,0,sizeof(vis)); for(int i = 1; i <= n; i++)
{
int x;
double m = DNF;
for(int y = 1; y <= n; y++) if(!vis[y] && d[y] <= m) m = d[x=y];
vis[x] = 1;
if(ans < d[x] && d[x]!= DNF) // ans 是这条路径上的最大权
{
ans = d[x];
}
if(x == 2) return; //走到目的地即可
for(int y = 1; y <= n; y++) if(!vis[y])
d[y] = min(d[y], w[x][y]); //更新未接入的点的dist
} } int main()
{
int kcase = 0;
while(scanf("%d", &n) != EOF)
{
if(n == 0) break;
for(int i = 1; i <= n; i++)
{
scanf("%lf%lf", &p[i].x, &p[i].y);
} for(int i = 1; i <= n; i++)
{
w[i][i] = 0;
for(int j = i+1; j <= n; j++)
{
w[i][j] = dist(p[i],p[j]);
w[j][i] = dist(p[i],p[j]);
}
} ans = 0;
Dijkstra();
printf("Scenario #%d\n", ++kcase);
printf("Frog Distance = %.3lf\n\n", ans);
}
}


POJ 2253 Frogger【最短路变形——路径上最小的最大权】的更多相关文章

  1. POJ 2253 Frogger ( 最短路变形 || 最小生成树 )

    题意 : 给出二维平面上 N 个点,前两个点为起点和终点,问你从起点到终点的所有路径中拥有最短两点间距是多少. 分析 : ① 考虑最小生成树中 Kruskal 算法,在建树的过程中贪心的从最小的边一个 ...

  2. POJ 2253 Frogger -- 最短路变形

    这题的坑点在POJ输出double不能用%.lf而要用%.f...真是神坑. 题意:给出一个无向图,求节点1到2之间的最大边的边权的最小值. 算法:Dijkstra 题目每次选择权值最小的边进行延伸访 ...

  3. poj 2253 Frogger【最小生成树变形】【kruskal】

    Frogger Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 30427   Accepted: 9806 Descript ...

  4. POJ 2253 Frogger (最短路)

    Frogger Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 28333   Accepted: 9208 Descript ...

  5. poj 2253 Frogger(最短路 floyd)

    题目:http://poj.org/problem?id=2253 题意:给出两只青蛙的坐标A.B,和其他的n-2个坐标,任一两个坐标点间都是双向连通的.显然从A到B存在至少一条的通路,每一条通路的元 ...

  6. POJ 2253 Frogger(Dijkstra变形——最短路径最大权值)

    题目链接: http://poj.org/problem?id=2253 Description Freddy Frog is sitting on a stone in the middle of ...

  7. POJ 2253 Frogger(dijkstra变形)

    http://poj.org/problem?id=2253 题意: 有两只青蛙A和B,现在青蛙A要跳到青蛙B的石头上,中间有许多石头可以让青蛙A弹跳.给出所有石头的坐标点,求出在所有通路中青蛙需要跳 ...

  8. POJ 2253 Frogger 最短路 难度:0

    http://poj.org/problem?id=2253 #include <iostream> #include <queue> #include <cmath&g ...

  9. [ACM] POJ 2253 Frogger (最短路径变形,每条通路中的最长边的最小值)

    Frogger Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 24879   Accepted: 8076 Descript ...

随机推荐

  1. Yii Framework2.0开发教程(3)数据库mysql入门

    沿用教程(2)的代码 第一步.在本地mysql数据库中新建数据库zhyoulun 第二步.在数据库中新建表并插入若干条数据 CREATE TABLE `country` ( `code` CHAR(2 ...

  2. openfireserver和jdk环境删除命令

    一.卸载jdk1.8 终端依次运行以下的命令 sudo rm -fr /Library/Internet\ Plug-Ins/JavaAppletPlugin.plugin sudo rm -rf / ...

  3. 多线程-BlockingQueue,Array[Linked]BlockingQueue,DelayQueue,PriorityBlockingQueue,SynchronousQueue

    阻塞场景 BlockingQueue阻塞队列,阻塞的情况主要有如下2种: 1. 当队列满了,进行入队操作阻塞 2. 当队列空了,进行出队操作阻塞 阻塞队列主要用在生产者/消费者模式中,下图展示了一个线 ...

  4. 匿名内部类 , Iterable<T> 和 Iterator<T>

    package generic; import java.util.ArrayList; import java.util.Arrays; import java.util.Collection; i ...

  5. android6.0 adbd深入分析(二)adb驱动数据的处理、写数据到adb驱动节点

     上篇博客最后讲到在output_thread中.读取了adb驱动的数据后.就调用write_packet(t->fd, t->serial, &p)函数,把数据网socket ...

  6. oracle instant client,tnsping,tnsnames.ora和ORACLE_HOME

    前段时间要远程连接oracle数据库,可是又不想在自己电脑上完整安装oracleclient,于是到oracle官网下载了轻量级clientinstant client. 这玩意没有图形界面,全靠sq ...

  7. SecureCRT中 secureCRT使用VIM时对语法高亮

    1.在SecureCRT中 secureCRT使用VIM时对语法高亮 其实不是secureCRT的功能,而是VIM的 设置:Options ->Session Options -> Ter ...

  8. ios-A+B经典问题

    // // main.m // a+b // #import <Foundation/Foundation.h> #import "Calcultor.h" int m ...

  9. Tuning 04 Sizing the Buffer Cache

    Buffer Cache 特性 The buffer cache holds copies of the data blocks from the data files. Because the bu ...

  10. c++ 单例模式 对全局变量的替代

    前段时间要实习一个充值接口,创建了一个类(就叫类A好了),这个类A要和另外3个类进行交互,3个类对类A修改的数据是对其他类可见的.这种情况我想到了3个方法: 1.static 静态成员,静态成员为该类 ...