链接:



Frogger
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 21206   Accepted: 6903

Description

Freddy Frog is sitting on a stone in the middle of a lake. Suddenly he notices Fiona Frog who is sitting on another stone. He plans to visit her, but since the water is dirty and full of tourists' sunscreen, he wants to avoid swimming and instead reach her
by jumping. 

Unfortunately Fiona's stone is out of his jump range. Therefore Freddy considers to use other stones as intermediate stops and reach her by a sequence of several small jumps. 

To execute a given sequence of jumps, a frog's jump range obviously must be at least as long as the longest jump occuring in the sequence. 

The frog distance (humans also call it minimax distance) between two stones therefore is defined as the minimum necessary jump range over all possible paths between the two stones. 



You are given the coordinates of Freddy's stone, Fiona's stone and all other stones in the lake. Your job is to compute the frog distance between Freddy's and Fiona's stone. 

Input

The input will contain one or more test cases. The first line of each test case will contain the number of stones n (2<=n<=200). The next n lines each contain two integers xi,yi (0 <= xi,yi <= 1000) representing the coordinates of stone #i. Stone #1 is Freddy's
stone, stone #2 is Fiona's stone, the other n-2 stones are unoccupied. There's a blank line following each test case. Input is terminated by a value of zero (0) for n.

Output

For each test case, print a line saying "Scenario #x" and a line saying "Frog Distance = y" where x is replaced by the test case number (they are numbered from 1) and y is replaced by the appropriate real number, printed to three decimals. Put a blank line
after each test case, even after the last one.

Sample Input

2
0 0
3 4 3
17 4
19 4
18 5 0

Sample Output

Scenario #1
Frog Distance = 5.000 Scenario #2
Frog Distance = 1.414

Source




题意:


       给出一个无向图,求一条1~2的路径使得路径上的最大边权最小.

算法:

floyd 变形或者 Dijkstra 变形都可以

分析:

        floyd变形,将更新距离的过程改为取最大值即可.
        w[i][j] = min(w[i][j], max(w[i][k], w[k][j]))


PS:

    这道题不像其它的最短路,是求总路径最小,而是不管总路径,只要保证路径上的最大边权在所有可以走的路径中最小就可以了所以要遍历每一条路径了Orz 如果用 Dijkstra 写有点像 Prim

code:

floyd:

/*
题意:给出一个无向图,求一条1~2的路径使得路径上的最大边权最小. 分析:floyd变形,将更新距离的过程改为取最大值即可.
*/
#include<stdio.h>
#include<math.h>
#include<string.h>
#include<algorithm>
using namespace std; const double DNF = 2000;
const int maxn = 210; double w[maxn][maxn];
int n; struct Point{
double x,y;
}p[maxn]; double dist(Point a, Point b)
{
return sqrt((a.x-b.x)*(a.x-b.x) + (a.y-b.y)*(a.y-b.y));
} void floyd()
{
for(int k = 1; k <= n; k++)
for(int i = 1; i <= n; i++)
for(int j = 1; j <= n; j++)
w[i][j] = min(w[i][j], max(w[i][k], w[k][j])); //更新i——j路径上最小的最大边权
} int main()
{
int kcase = 0;
while(scanf("%d", &n) != EOF)
{
if(n == 0) break;
for(int i = 1; i <= n; i++)
{
scanf("%lf%lf", &p[i].x, &p[i].y);
} for(int i = 1; i <= n; i++)
{
w[i][i] = 0;
for(int j = i+1; j <= n; j++)
{
w[i][j] = dist(p[i],p[j]);
w[j][i] = dist(p[i],p[j]);
}
} floyd();
printf("Scenario #%d\n", ++kcase);
printf("Frog Distance = %.3lf\n\n", w[1][2]);
}
}

Dijkstra:


/*
题意:给出一个无向图,求一条1~2的路径使得路径上的最大边权最小. 分析:dijkstra变形,将更新距离的过程改为取最大值即可.
*/
#include<stdio.h>
#include<math.h>
#include<string.h>
#include<algorithm>
using namespace std; const double DNF = 2000;
const int maxn = 210; double w[maxn][maxn];
double d[maxn];
int vis[maxn];
int n;
double ans; struct Point{
double x,y;
}p[maxn]; double dist(Point a, Point b)
{
return sqrt((a.x-b.x)*(a.x-b.x) + (a.y-b.y)*(a.y-b.y));
} void Dijkstra()
{
for(int i = 1; i <= n; i++) d[i] = DNF;
d[1] = 0;
memset(vis,0,sizeof(vis)); for(int i = 1; i <= n; i++)
{
int x;
double m = DNF;
for(int y = 1; y <= n; y++) if(!vis[y] && d[y] <= m) m = d[x=y];
vis[x] = 1;
if(ans < d[x] && d[x]!= DNF) // ans 是这条路径上的最大权
{
ans = d[x];
}
if(x == 2) return; //走到目的地即可
for(int y = 1; y <= n; y++) if(!vis[y])
d[y] = min(d[y], w[x][y]); //更新未接入的点的dist
} } int main()
{
int kcase = 0;
while(scanf("%d", &n) != EOF)
{
if(n == 0) break;
for(int i = 1; i <= n; i++)
{
scanf("%lf%lf", &p[i].x, &p[i].y);
} for(int i = 1; i <= n; i++)
{
w[i][i] = 0;
for(int j = i+1; j <= n; j++)
{
w[i][j] = dist(p[i],p[j]);
w[j][i] = dist(p[i],p[j]);
}
} ans = 0;
Dijkstra();
printf("Scenario #%d\n", ++kcase);
printf("Frog Distance = %.3lf\n\n", ans);
}
}


POJ 2253 Frogger【最短路变形——路径上最小的最大权】的更多相关文章

  1. POJ 2253 Frogger ( 最短路变形 || 最小生成树 )

    题意 : 给出二维平面上 N 个点,前两个点为起点和终点,问你从起点到终点的所有路径中拥有最短两点间距是多少. 分析 : ① 考虑最小生成树中 Kruskal 算法,在建树的过程中贪心的从最小的边一个 ...

  2. POJ 2253 Frogger -- 最短路变形

    这题的坑点在POJ输出double不能用%.lf而要用%.f...真是神坑. 题意:给出一个无向图,求节点1到2之间的最大边的边权的最小值. 算法:Dijkstra 题目每次选择权值最小的边进行延伸访 ...

  3. poj 2253 Frogger【最小生成树变形】【kruskal】

    Frogger Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 30427   Accepted: 9806 Descript ...

  4. POJ 2253 Frogger (最短路)

    Frogger Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 28333   Accepted: 9208 Descript ...

  5. poj 2253 Frogger(最短路 floyd)

    题目:http://poj.org/problem?id=2253 题意:给出两只青蛙的坐标A.B,和其他的n-2个坐标,任一两个坐标点间都是双向连通的.显然从A到B存在至少一条的通路,每一条通路的元 ...

  6. POJ 2253 Frogger(Dijkstra变形——最短路径最大权值)

    题目链接: http://poj.org/problem?id=2253 Description Freddy Frog is sitting on a stone in the middle of ...

  7. POJ 2253 Frogger(dijkstra变形)

    http://poj.org/problem?id=2253 题意: 有两只青蛙A和B,现在青蛙A要跳到青蛙B的石头上,中间有许多石头可以让青蛙A弹跳.给出所有石头的坐标点,求出在所有通路中青蛙需要跳 ...

  8. POJ 2253 Frogger 最短路 难度:0

    http://poj.org/problem?id=2253 #include <iostream> #include <queue> #include <cmath&g ...

  9. [ACM] POJ 2253 Frogger (最短路径变形,每条通路中的最长边的最小值)

    Frogger Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 24879   Accepted: 8076 Descript ...

随机推荐

  1. LINK : fatal error LNK1123: failure during conversion to COFF: file invalid or corrupt

    LINK : fatal error LNK1123: failure during conversion to COFF: file invalid or corrupt 解决方法: 项目--> ...

  2. Rabbitmq消息队列(三) 工作队列

    1.简介 默认来说,RabbitMQ会按顺序得把消息发送给每个消费者(consumer).平均每个消费者都会收到同等数量得消息.这种发送消息得方式叫做——轮询(round-robin). 工作队列(又 ...

  3. centos(7.0) 上 crontab 计划任务

    yum install vixie-cron yum install crontabs /bin/systemctl restart crond.service  #启动服务 /bin/systemc ...

  4. mysql 查询锁,解锁语句

    一:锁表: 锁定数据表,避免在备份过程中,表被更新 mysql>LOCK TABLES tbl_name READ; 为表增加一个写锁定: mysql>LOCK TABLES tbl_na ...

  5. Atitit 《摩奴法典》overivew 读后感 不是由国王 颁布的,而是 僧侣编制

    Atitit <摩奴法典>overivew 读后感 不是由国王 颁布的,而是 僧侣编制 1. <摩奴法典>是印度最古老的一部法律文献.该法典不是由国王或立法机关制定颁布的,而是 ...

  6. 【持续更新】总结:C++开发时积累的一些零碎的东西

    Makefile template update: 1.调整了顺序,把经常编辑的部分集中在了Makefile的下半部分 2.进行了一些重构实现更多的代码复用,见红色高亮部分,LIBPATH_ALL和L ...

  7. Objective-C中.h文件、.m文件中@interface、@synthesize及其它

    很多开发iOS好几年的老鸟,可能都不太分的清.h文件和.m文件里各种结构的用途和区别.最近仔细研究了一下,写一篇文章记下来. 一般的,写一个Class的时候,经常是这种格式(以UIViewContro ...

  8. php的颜色定义表

    http://outofmemory.cn/code-snippet/1960/php-color-define-table <? /////////////////////////////// ...

  9. ID4收藏

    IdentityServer4.Admin https://github.com/skoruba/IdentityServer4.Admin

  10. hive执行更新和删除操作

    Hive从0.14版本开始支持事务和行级更新,但缺省是不支持的,需要一些附加的配置.要想支持行级insert.update.delete,需要配置Hive支持事务. 一.Hive具有ACID语义事务的 ...