因为保证了两向量不共线,平面内任何一个向量都被这两个向量唯一表示。问题变为一张有障碍点的网格图由左上走到右下的方案数。

  到达终点所需步数显然是平方级别的,没法直接递推。注意到障碍点数量很少,那么考虑容斥,即用总方案数减去经过障碍点的方案数。对每个障碍点计算其作为第一个经过的障碍点的方案数即可。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 510
#define P 1000000007
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<''||c>'')) c=getchar();return c;}
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int t,n,m,cnt,fac[N*N<<],inv[N*N<<],f[N],ans;
struct data
{
int x,y;
void get(){x=read(),y=read();}
int operator *(const data&a) const
{
return x*a.y-y*a.x;
}
bool operator <(const data&a) const
{
return x+y<a.x+a.y;
}
}e,a,b,ban[N],v[N];
int C(int n,int m){return 1ll*fac[n]*inv[m]%P*inv[n-m]%P;}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj4767.in","r",stdin);
freopen("bzoj4767.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
e.get();t=read();a.get();b.get();
for (int i=;i<=t;i++) ban[i].get();
if ((e*b)%(a*b)||(e*a)%(b*a)) {cout<<;return ;}
n=(e*b)/(a*b),m=(e*a)/(b*a);
for (int i=;i<=t;i++)
if ((ban[i]*b)%(a*b)||(ban[i]*a)%(b*a));
else
{
int x=(ban[i]*b)/(a*b),y=(ban[i]*a)/(b*a);
if (x>=&&x<=n&&y>=&&y<=m) v[++cnt]=(data){x,y};
}
sort(v+,v+cnt+);
fac[]=;for (int i=;i<=n+m;i++) fac[i]=1ll*fac[i-]*i%P;
inv[]=inv[]=;for (int i=;i<=n+m;i++) inv[i]=P-1ll*(P/i)*inv[P%i]%P;
for (int i=;i<=n+m;i++) inv[i]=1ll*inv[i]*inv[i-]%P;
ans=C(n+m,n);
for (int i=;i<=cnt;i++)
{
f[i]=1ll*C(v[i].x+v[i].y,v[i].x);
for (int j=;j<i;j++)
if (v[i].x>=v[j].x&&v[i].y>=v[j].y)
f[i]=(f[i]-1ll*f[j]*C(v[i].x-v[j].x+v[i].y-v[j].y,v[i].x-v[j].x)%P+P)%P;
ans=(ans-1ll*f[i]*C(n-v[i].x+m-v[i].y,n-v[i].x)%P+P)%P;
}
cout<<ans;
return ;
}

BZOJ4767 两双手(组合数学+容斥原理)的更多相关文章

  1. BZOJ4767: 两双手【组合数学+容斥原理】

    Description 老W是个棋艺高超的棋手,他最喜欢的棋子是马,更具体地,他更加喜欢马所行走的方式.老W下棋时觉得无聊,便决定加强马所行走的方式,更具体地,他有两双手,其中一双手能让马从(u,v) ...

  2. bzoj4767两双手 容斥+组合

    4767: 两双手 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 684  Solved: 208[Submit][Status][Discuss] ...

  3. 2019.02.11 bzoj4767: 两双手(组合数学+容斥dp)

    传送门 题意简述:你要从(0,0)(0,0)(0,0)走到(ex,ey)(ex,ey)(ex,ey),每次可以从(x,y)(x,y)(x,y)走到(x+ax,y+ay)(x+ax,y+ay)(x+ax ...

  4. BZOJ4767 两双手

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...

  5. bzoj 4767 两双手 - 动态规划 - 容斥原理

    题目传送门 传送门I 传送门II 题目大意 一个无限大的棋盘上有一只马,设马在某个时刻的位置为$(x, y)$, 每次移动可以将马移动到$(x + A_x, y + A_y)$或者$(x + B_x, ...

  6. bzoj 4767: 两双手 组合 容斥

    题目链接 bzoj4767: 两双手 题解 不共线向量构成一组基底 对于每个点\((X,Y)\)构成的向量拆分 也就是对于方程组 $Ax * x + Bx * y = X $ \(Ay * x + B ...

  7. 【BZOJ】4767: 两双手【组合数学】【容斥】【DP】

    4767: 两双手 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1057  Solved: 318[Submit][Status][Discuss] ...

  8. 【BZOJ4767】两双手(动态规划,容斥)

    [BZOJ4767]两双手(动态规划,容斥) 题面 BZOJ 题解 发现走法只有两种,并且两维坐标都要走到对应的位置去. 显然对于每个确定的点,最多只有一种固定的跳跃次数能够到达这个点. 首先对于每个 ...

  9. BZOJ_3129_[Sdoi2013]方程_组合数学+容斥原理

    BZOJ_3129_[Sdoi2013]方程_组合数学+容斥原理 Description 给定方程     X1+X2+. +Xn=M 我们对第l..N1个变量进行一些限制: Xl < = A ...

随机推荐

  1. 理解C指针: 一个内存地址对应着一个值

    一个内存地址存着一个对应的值,这是比较容易理解的. 如果程序员必须清楚地知道某块内存存着什么内容和某个内容存在哪个内存地址里了,那他们的负担可想而知.    汇编语法对“一个内存地址存着一个对应的数” ...

  2. 全国Uber优步司机奖励政策 (12月28日-1月3日)

    本周已经公开奖励整的城市有:北 京.成 都.重 庆.上 海.深 圳.长 沙.佛 山.广 州.苏 州.杭 州.南 京.宁 波.青 岛.天 津.西 安.武 汉.厦 门,可按CTRL+F,搜城市名快速查找. ...

  3. 北京Uber优步司机奖励政策(1月17日)

    滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...

  4. solr 常见的问题整理 -费元星

    本文是我在开发过程中遇到的一些问题的整理,有些摘自网上别人的方法. 1. org.apache.solr.client.solrj.SolrServerException: Timeout occur ...

  5. 图片文件转换成Base64编码实现ajax提交图片

    //上传头像图片 function uploadHead(imgPath) { console.log("imgPath = " + imgPath); var image = n ...

  6. 打造移动应用与游戏安全防线,腾讯WeTest安全服务全线升级

    当移动互联网渗透到千家万户,与工业控制.智慧交通.实时社交.休闲娱乐紧密结合时,应用安全就变得尤为重要. 尤其在网络强相关的APP流行年代,当APP应用客户端上传与获取信息,大多通过接口在服务器双向通 ...

  7. mysql 开启远程连接

    如图,修改mysql数据库中user表中的User字段为root的host为%,然后重新启动mysql服务即可让远程桌面连接本地.

  8. Qt-QML-C++交互实现文件IO系统

    QMl是没有自己的文件IO控制的,这里如果我们需要对文件进行读写操作,那么就需要去C++或者JS完成交互,交互方式有多种,由于我还没有掌握,这里就不介绍具体的交互方式了.这里就简单说明一下我的实现过程 ...

  9. 利用爬虫、SMTP和树莓派3B发送邮件(爬取墨迹天气预报信息)

    -----------------------------------------学无止境----------------------------------------- 前言:大家好,欢迎来到誉雪 ...

  10. vim python自动补全插件:pydiction

    vim python自动补全插件:pydiction 可以实现下面python代码的自动补全: 1.简单python关键词补全 2.python 函数补全带括号 3.python 模块补全 4.pyt ...