题目描述

给出一个N个点的树,找出一个点来,以这个点为根的树时,所有点的深度之和最大

输入

给出一个数字N,代表有N个点.N<=1000000 下面N-1条边.

输出

输出你所找到的点,如果具有多个解,请输出编号最小的那个.

样例输入

8
1 4
5 6
4 5
6 7
6 8
2 4
3 4


题解

树形dp

f[x]表示子树i中所有点到点x的距离之和。

g[x]表示整个树中所有点到点x的距离之和。

然后我们发现f和g都是可以递推求出来的,并且f[1]=g[1]。

于是可以先求f[x],f[x]=∑(f[to[i]]+si[to[i]])。

因为这些点到x的距离比到to[i]多1,总共有si[to[i]]个点,所以加上si[to[i]]。

然后g[1]=f[1],再递推求g[to[i]],g[to[i]]=g[x]+n-2*si[to[i]]。

因为有n-si[to[i]]个点到to[i]的距离比到x多1,所以加n-si[to[i]];有si[to[i]]个点到to[i]的距离比到x少1,所以再减si[to[i]],最后就是g[x]+n-2*si[to[i]]。

最后求g[x]的最大值即可。

#include <cstdio>
int n , head[1000001] , to[2000001] , next[2000001] , cnt;
long long si[1000001] , f[1000001] , g[1000001];
void add(int x , int y)
{
to[++cnt] = y;
next[cnt] = head[x];
head[x] = cnt;
}
void dfs1(int x , int fa)
{
int i;
si[x] = 1;
for(i = head[x] ; i ; i = next[i])
{
if(to[i] != fa)
{
dfs1(to[i] , x);
si[x] += si[to[i]];
f[x] += f[to[i]] + si[to[i]];
}
}
}
void dfs2(int x , int fa)
{
int i;
for(i = head[x] ; i ; i = next[i])
{
if(to[i] != fa)
{
g[to[i]] = g[x] + n - 2 * si[to[i]];
dfs2(to[i] , x);
}
}
}
int main()
{
int i , x , y , ans = 0;
scanf("%d" , &n);
for(i = 1 ; i < n ; i ++ )
scanf("%d%d" , &x , &y) , add(x , y) , add(y , x);
dfs1(1 , 0);
g[1] = f[1];
dfs2(1 , 0);
for(i = 1 ; i <= n ; i ++ )
if(g[ans] < g[i])
ans = i;
printf("%d\n" , ans);
return 0;
}

【bzoj1131】[POI2008]Sta 树形dp的更多相关文章

  1. BZOJ1131[POI2008]Sta——树形DP

    题目描述 给出一个N个点的树,找出一个点来,以这个点为根的树时,所有点的深度之和最大 输入 给出一个数字N,代表有N个点.N<=1000000 下面N-1条边. 输出 输出你所找到的点,如果具有 ...

  2. 【BZOJ-1131】Sta 树形DP

    1131: [POI2008]Sta Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1150  Solved: 378[Submit][Status] ...

  3. [bzoj1131][POI2008]Sta_树形dp

    Sta bzoj-1131 POI-2008 题目大意:给定一棵n个点的树,求一个根,使得深度和最大. 注释:$1\le n \le 10^6$. 想法:扭一扭即可. 扭的时候看看这个点当没当过根. ...

  4. bzoj 1131 [POI2008]Sta 树形dp 转移根模板题

    [POI2008]Sta Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1889  Solved: 729[Submit][Status][Discu ...

  5. BZOJ1131 POI2008 Sta 【树形DP】

    BZOJ1131 POI2008 Sta Description 给出一个N个点的树,找出一个点来,以这个点为根的树时,所有点的深度之和最大 Input 给出一个数字N,代表有N个点.N<=10 ...

  6. Bzoj 1131[POI2008]STA-Station (树形DP)

    Bzoj 1131[POI2008]STA-Station (树形DP) 状态: 设\(f[i]\)为以\(i\)为根的深度之和,然后考虑从他父亲转移. 发现儿子的深度及其自己的深度\(-1\) 其余 ...

  7. [BZOJ1131][POI2008] Sta 树的深度

    Description 给出一个N个点的树,找出一个点来,以这个点为根的树时,所有点的深度之和最大 Input 给出一个数字N,代表有N个点.N<=1000000 下面N-1条边. Output ...

  8. [BZOJ1131/POI2008]Sta树的深度

    Description 给出一个N个点的树,找出一个点来,以这个点为根的树时,所有点的深度之和最大 Input 给出一个数字N,代表有N个点.N<=1000000 下面N-1条边. Output ...

  9. bzoj1131: [POI2008]Sta

    思路:首先先求出以1为根的答案,然后考虑由i转移到i的儿子的答案的变化,显然以son[i]为根的子树的所有结点的深度都会减一,其余的点的深度都会加一,然后就可以直接O(n)求出所有结点的答案,然后取m ...

随机推荐

  1. Java设计模式(14)——行为模式之不变模式(Immutable)

    一.概述 概念 分类:弱不变模式(子类可变)和强不变模式(子类也是不可变) 应用场景 java.lang.String是一个经典的强不变类 二.分析 与享元模式的关系

  2. 20145234黄斐《Java程序设计》第二周学习总结

    教材学习内容总结 类型 Java可区分为基本类型(Primitive Type)和类类型(Class Type),其中类类型也叫参考类型(Reference Type). 字节类型,也叫byte类型, ...

  3. DevExpress通过girdcontrol实现分页

    简介:DevExpress中如何实现GridControl的分页功能, 主要是利用DataNavigator和GridControl组合,自定义事件实现分页功能 接下来,我们就去实现分页功能,先看下效 ...

  4. fastDFS 分布式文件系统应用

    环境准备 使用的系统软件 名称 说明 centos 7.x libfatscommon FastDFS分离出的一些公用函数包 FastDFS FastDFS本体 fastdfs-nginx-modul ...

  5. DSP5509开发之FPGA接口

    1. DSP5509和FPGA或者CPLD之间是什么接口,DSP相对普通MCU,具有专门的硬件乘法器,程序和数据分开的哈弗结构,特殊的DSP指令,快速的实现各种数字信号处理算法.在一个周期内可以完成一 ...

  6. protected修饰符详解

    protected这个修饰符,各大参考书都会这样说:访问权限为类内,包内和子类,因此在父类中定义的方法和成员变量如果为protected修饰的,是可以在不同包中的子类进行访问的,示例代码如下: pac ...

  7. dva webpack 利用require.context加载多个model

    dva redux数据管理都在models,根据业务不同models可能会有几十甚至上百的 [模块.js], 每次在index.js使用 app.model(require('./models/exa ...

  8. OSG-获取OSG的源代码和第三方库并编译

    获取OSG的源代码有很多方式. 这里说下其中的两个地方,第一就是中国的OSG网站http://www.osgchina.org/,这个网站目前应该是由中国西安恒歌科技维护,同时,西安恒歌科技也是一家已 ...

  9. Python全栈 Web(边框、盒模型、背景)

    原文地址 https://yq.aliyun.com/articles/634926 ......................................................... ...

  10. leetcode-岛屿的个数

    岛屿的个数 给定一个由 '1'(陆地)和 '0'(水)组成的的二维网格,计算岛屿的数量.一个岛被水包围,并且它是通过水平方向或垂直方向上相邻的陆地连接而成的.你可以假设网格的四个边均被水包围. 示例 ...