Description

栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量。在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起。 栋栋的植物种得非常整齐,一共有n列,每列有m棵,植物的横竖间距都一样,因此对于每一棵植物,栋栋可以用一个坐标(x, y)来表示,其中x的范围是1至n,表示是在第x列,y的范围是1至m,表示是在第x列的第y棵。 由于能量汇集机器较大,不便移动,栋栋将它放在了一个角上,坐标正好是(0, 0)。 能量汇集机器在汇集的过程中有一定的能量损失。如果一棵植物与能量汇集机器连接而成的线段上有k棵植物,则能量的损失为2k + 1。例如,当能量汇集机器收集坐标为(2, 4)的植物时,由于连接线段上存在一棵植物(1, 2),会产生3的能量损失。注意,如果一棵植物与能量汇集机器连接的线段上没有植物,则能量损失为1。现在要计算总的能量损失。 下面给出了一个能量采集的例子,其中n = 5,m = 4,一共有20棵植物,在每棵植物上标明了能量汇集机器收集它的能量时产生的能量损失。 在这个例子中,总共产生了36的能量损失。

Input

仅包含一行,为两个整数n和m。

Output

仅包含一个整数,表示总共产生的能量损失。

Sample Input

【样例输入1】
5 4
【样例输入2】
3 4

Sample Output

【样例输出1】
36
【样例输出2】
20
对于100%的数据:1 ≤ n, m ≤ 100,000。

Solution

首先要知道一点,就是对于一个点$(x,y)$来说,ta到起点的连线会经过$gcd(x,y)-1$个点(不包含本身)为什么我也不会证,不过感性理解非常正确

所以题目就成了求$\sum_{i=1}^{n}\sum_{j=1}^{m}2*(gcd(i,j)-1)+1$

化简一下就成了$2*\sum_{i=1}^{n}\sum_{j=1}^{m}gcd(i,j)-n*m$

也就是求出$\sum_{i=1}^{n}\sum_{j=1}^{m}gcd(i,j)$题目就结束了 。

以下假设n<m

$\sum_{i=1}^n \sum_{j=1}^mgcd(i,j)$

$=\sum_{p=1}^{n} p \sum_{i=1}^n \sum_{j=1}^m[gcd(i,j)=p]$

$=\sum_{p=1}^np\sum_{i=1}^{\left \lfloor \frac{n}{p} \right \rfloor}\sum_{j=1}^{\left \lfloor \frac{m}{p} \right \rfloor}[gcd(i,j)=1]$

$=\sum_{p=1}^np\sum_{i=1}^{\left \lfloor \frac{n}{p} \right \rfloor}\sum_{j=1}^{\left \lfloor \frac{m}{p} \right \rfloor}\sum_{d|gcd(a,b)}\mu(d)$

$=\sum_{p=1}^np\sum_{d=1}^{\left \lfloor \frac{n}{p} \right \rfloor}\mu(d){\left \lfloor \frac{n}{pd} \right \rfloor}{\left \lfloor \frac{m}{pd} \right \rfloor}$

设$pd=T$

$=\sum_{T=1}^{n}{\left \lfloor \frac{n}{T} \right \rfloor}{\left \lfloor \frac{m}{T} \right \rfloor}\sum_{p|T}p*\mu(\frac{T}{p})$

$=\sum_{T=1}^{n}{\left \lfloor \frac{n}{T} \right \rfloor}{\left \lfloor \frac{m}{T} \right \rfloor}φ(T)$

$\sum_{p|T}p*\mu(\frac{T}{p})=φ(T)$好像是因为用到了求欧拉函数的时候容斥的思想QAQ……

Code

 #include<iostream>
#include<cstdio>
#define N (100000)
using namespace std; long long ans,n,m,sum[N+],phi[N+]; void Get_phi()
{
phi[]=;
for (int i=; i<=N; ++i)
if (!phi[i])
for (int j=i; j<=N; j+=i)
{
if (!phi[j]) phi[j]=j;
phi[j]=phi[j]/i*(i-);
}
for (int i=; i<=N; ++i) sum[i]=sum[i-]+phi[i];
} int main()
{
scanf("%lld%lld",&n,&m);
if (n>m) swap(n,m);
Get_phi();
for (int l=,r; l<=n; l=r+)
{
r=min(n/(n/l),m/(m/l));
ans+=(sum[r]-sum[l-])*(n/l)*(m/l);
}
printf("%lld\n",*ans-n*m);
}

BZOJ2005:[NOI2010]能量采集(莫比乌斯反演,欧拉函数)的更多相关文章

  1. BZOJ2005: [Noi2010]能量采集 莫比乌斯反演的另一种方法——nlogn筛

    分析:http://www.cnblogs.com/huhuuu/archive/2011/11/25/2263803.html 注:从这个题收获了两点 1,第一象限(x,y)到(0,0)的线段上整点 ...

  2. $BZOJ$2818 $gcd$ 莫比乌斯反演/欧拉函数

    正解:莫比乌斯反演/欧拉函数 解题报告: 传送门$QwQ$ 一步非常显然的变形,原式=$\sum_{d=1,d\in prim}^{n}\sum_{i=1}^{n}\sum_{j=1}^{n}[gcd ...

  3. luogu1447 [NOI2010]能量采集 莫比乌斯反演

    link 冬令营考炸了,我这个菜鸡只好颓废数学题了 NOI2010能量采集 由题意可以写出式子: \(\sum_{i=1}^n\sum_{j=1}^m(2\gcd(i,j)-1)\) \(=2\sum ...

  4. [luogu P2586] GCD 解题报告 (莫比乌斯反演|欧拉函数)

    题目链接:https://www.luogu.org/problemnew/show/P2568#sub 题目大意: 计算​$\sum_{x=1}^n\sum_{y=1}^n [gcd(x,y)==p ...

  5. luogu2658 GCD(莫比乌斯反演/欧拉函数)

    link 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 1<=N<=10^7 (1)莫比乌斯反演法 发现就是YY的GCD,左转YY的GCD ...

  6. 洛谷 - P1390 - 公约数的和 - 莫比乌斯反演 - 欧拉函数

    https://www.luogu.org/problemnew/show/P1390 求 $\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m} gcd(i,j) $ ...

  7. HDU 6390 GuGuFishtion(莫比乌斯反演 + 欧拉函数性质 + 积性函数)题解

    题意: 给定\(n,m,p\),求 \[\sum_{a=1}^n\sum_{b=1}^m\frac{\varphi(ab)}{\varphi(a)\varphi(b)}\mod p \] 思路: 由欧 ...

  8. 【BZOJ 2005】[Noi2010]能量采集 (容斥原理| 欧拉筛+ 分块)

    能量采集 Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋 ...

  9. BZOJ 2005: [Noi2010]能量采集 [莫比乌斯反演]

    题意:\((0,0)\)到\((x,y),\ x \le n, y \le m\)连线上的整点数\(*2-1\)的和 \((0,0)\)到\((a,b)\)的整点数就是\(gcd(a,b)\) 因为. ...

随机推荐

  1. 深入理解JavaScript系列(41):设计模式之模板方法

    介绍 模板方法(TemplateMethod)定义了一个操作中的算法的骨架,而将一些步骤延迟到子类中.模板方法使得子类可以不改变一个算法的结构即可重定义该算法的某些特定步骤. 模板方法是一种代码复用的 ...

  2. Reactjs事件处理的三种写法

    目录 前言 1. 在回调函数中使用箭头函数 2. 在构造器中绑定this 3. 使用类字段语法 事件参数的传递. 总结 前言 Reactjs中事件处理,与DOM元素处理类似,但也有一些不同的语法. R ...

  3. ASP.NET Visual Studio2010 发布Web网站问题详解

    今天研究了一下如何发布web网站,之前总是没耐心,遇到点问题就没心情搞了,今天总算有点耐心搞明白了.其实遇到的问题还是挺多的,网上也没有太全的解释,所以结合自己还有别人的方法进行一下总结. 环境:Wi ...

  4. java温故而知新(8)反射机制

    一.什么是反射机制  简单的来说,反射机制指的是程序在运行时能够获取自身的信息.在java中,只要给定类的名字, 那么就可以通过反射机制来获得类的所有信息. 二.哪里用到反射机制  有些时候,我们用过 ...

  5. JBPM学习第3篇:10分钟熟悉JBPM工作台

    1.打开:http://localhost:8080/jbpm-console 键入用户名和密码(krisv/krisv)登陆. 2.看视频: http://download.jboss.org/jb ...

  6. easyui numberbox 输入框禁止输入

    { field: 'Amount', title: '金额', width: 80, editor: { type: 'numberbox', options: { disabled: true, p ...

  7. sqoop简单介绍

    一简介 Sqoop是一个用来将Hadoop和关系型数据库中的数据相互转移的工具,可以将一个关系型数据库(例如 : MySQL ,Oracle ,Postgres等)中的数据导进到Hadoop的HDFS ...

  8. arcgis 地理国情建库软件已完成

    arcgis 地理国情软件已完成: 1.创建1:25000(或则其他比例尺)国家2000坐标系接合表 2.按照地理国情普查数据库标准,创建标准数据库 3.外业调查工作底图制作 4.矢量和影像数据批量裁 ...

  9. 09_dubbo服务发布原理

    [ 启动服务的日志分析 ] 1.暴露本地服务 Export dubbo service com.alibaba.dubbo.demo.DemoService to local registry, du ...

  10. 创建线程后马上CloseHandle(threadhandle)起什么作用

    原文:http://www.cnblogs.com/eddyshn/archive/2010/04/14/1711674.html HANDLE threadhandle = CreateThread ...