Description

栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量。在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起。 栋栋的植物种得非常整齐,一共有n列,每列有m棵,植物的横竖间距都一样,因此对于每一棵植物,栋栋可以用一个坐标(x, y)来表示,其中x的范围是1至n,表示是在第x列,y的范围是1至m,表示是在第x列的第y棵。 由于能量汇集机器较大,不便移动,栋栋将它放在了一个角上,坐标正好是(0, 0)。 能量汇集机器在汇集的过程中有一定的能量损失。如果一棵植物与能量汇集机器连接而成的线段上有k棵植物,则能量的损失为2k + 1。例如,当能量汇集机器收集坐标为(2, 4)的植物时,由于连接线段上存在一棵植物(1, 2),会产生3的能量损失。注意,如果一棵植物与能量汇集机器连接的线段上没有植物,则能量损失为1。现在要计算总的能量损失。 下面给出了一个能量采集的例子,其中n = 5,m = 4,一共有20棵植物,在每棵植物上标明了能量汇集机器收集它的能量时产生的能量损失。 在这个例子中,总共产生了36的能量损失。

Input

仅包含一行,为两个整数n和m。

Output

仅包含一个整数,表示总共产生的能量损失。

Sample Input

【样例输入1】
5 4
【样例输入2】
3 4

Sample Output

【样例输出1】
36
【样例输出2】
20
对于100%的数据:1 ≤ n, m ≤ 100,000。

Solution

首先要知道一点,就是对于一个点$(x,y)$来说,ta到起点的连线会经过$gcd(x,y)-1$个点(不包含本身)为什么我也不会证,不过感性理解非常正确

所以题目就成了求$\sum_{i=1}^{n}\sum_{j=1}^{m}2*(gcd(i,j)-1)+1$

化简一下就成了$2*\sum_{i=1}^{n}\sum_{j=1}^{m}gcd(i,j)-n*m$

也就是求出$\sum_{i=1}^{n}\sum_{j=1}^{m}gcd(i,j)$题目就结束了 。

以下假设n<m

$\sum_{i=1}^n \sum_{j=1}^mgcd(i,j)$

$=\sum_{p=1}^{n} p \sum_{i=1}^n \sum_{j=1}^m[gcd(i,j)=p]$

$=\sum_{p=1}^np\sum_{i=1}^{\left \lfloor \frac{n}{p} \right \rfloor}\sum_{j=1}^{\left \lfloor \frac{m}{p} \right \rfloor}[gcd(i,j)=1]$

$=\sum_{p=1}^np\sum_{i=1}^{\left \lfloor \frac{n}{p} \right \rfloor}\sum_{j=1}^{\left \lfloor \frac{m}{p} \right \rfloor}\sum_{d|gcd(a,b)}\mu(d)$

$=\sum_{p=1}^np\sum_{d=1}^{\left \lfloor \frac{n}{p} \right \rfloor}\mu(d){\left \lfloor \frac{n}{pd} \right \rfloor}{\left \lfloor \frac{m}{pd} \right \rfloor}$

设$pd=T$

$=\sum_{T=1}^{n}{\left \lfloor \frac{n}{T} \right \rfloor}{\left \lfloor \frac{m}{T} \right \rfloor}\sum_{p|T}p*\mu(\frac{T}{p})$

$=\sum_{T=1}^{n}{\left \lfloor \frac{n}{T} \right \rfloor}{\left \lfloor \frac{m}{T} \right \rfloor}φ(T)$

$\sum_{p|T}p*\mu(\frac{T}{p})=φ(T)$好像是因为用到了求欧拉函数的时候容斥的思想QAQ……

Code

 #include<iostream>
#include<cstdio>
#define N (100000)
using namespace std; long long ans,n,m,sum[N+],phi[N+]; void Get_phi()
{
phi[]=;
for (int i=; i<=N; ++i)
if (!phi[i])
for (int j=i; j<=N; j+=i)
{
if (!phi[j]) phi[j]=j;
phi[j]=phi[j]/i*(i-);
}
for (int i=; i<=N; ++i) sum[i]=sum[i-]+phi[i];
} int main()
{
scanf("%lld%lld",&n,&m);
if (n>m) swap(n,m);
Get_phi();
for (int l=,r; l<=n; l=r+)
{
r=min(n/(n/l),m/(m/l));
ans+=(sum[r]-sum[l-])*(n/l)*(m/l);
}
printf("%lld\n",*ans-n*m);
}

BZOJ2005:[NOI2010]能量采集(莫比乌斯反演,欧拉函数)的更多相关文章

  1. BZOJ2005: [Noi2010]能量采集 莫比乌斯反演的另一种方法——nlogn筛

    分析:http://www.cnblogs.com/huhuuu/archive/2011/11/25/2263803.html 注:从这个题收获了两点 1,第一象限(x,y)到(0,0)的线段上整点 ...

  2. $BZOJ$2818 $gcd$ 莫比乌斯反演/欧拉函数

    正解:莫比乌斯反演/欧拉函数 解题报告: 传送门$QwQ$ 一步非常显然的变形,原式=$\sum_{d=1,d\in prim}^{n}\sum_{i=1}^{n}\sum_{j=1}^{n}[gcd ...

  3. luogu1447 [NOI2010]能量采集 莫比乌斯反演

    link 冬令营考炸了,我这个菜鸡只好颓废数学题了 NOI2010能量采集 由题意可以写出式子: \(\sum_{i=1}^n\sum_{j=1}^m(2\gcd(i,j)-1)\) \(=2\sum ...

  4. [luogu P2586] GCD 解题报告 (莫比乌斯反演|欧拉函数)

    题目链接:https://www.luogu.org/problemnew/show/P2568#sub 题目大意: 计算​$\sum_{x=1}^n\sum_{y=1}^n [gcd(x,y)==p ...

  5. luogu2658 GCD(莫比乌斯反演/欧拉函数)

    link 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 1<=N<=10^7 (1)莫比乌斯反演法 发现就是YY的GCD,左转YY的GCD ...

  6. 洛谷 - P1390 - 公约数的和 - 莫比乌斯反演 - 欧拉函数

    https://www.luogu.org/problemnew/show/P1390 求 $\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m} gcd(i,j) $ ...

  7. HDU 6390 GuGuFishtion(莫比乌斯反演 + 欧拉函数性质 + 积性函数)题解

    题意: 给定\(n,m,p\),求 \[\sum_{a=1}^n\sum_{b=1}^m\frac{\varphi(ab)}{\varphi(a)\varphi(b)}\mod p \] 思路: 由欧 ...

  8. 【BZOJ 2005】[Noi2010]能量采集 (容斥原理| 欧拉筛+ 分块)

    能量采集 Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋 ...

  9. BZOJ 2005: [Noi2010]能量采集 [莫比乌斯反演]

    题意:\((0,0)\)到\((x,y),\ x \le n, y \le m\)连线上的整点数\(*2-1\)的和 \((0,0)\)到\((a,b)\)的整点数就是\(gcd(a,b)\) 因为. ...

随机推荐

  1. java代码行数统计工具类

    package com.syl.demo.test; import java.io.*; /** * java代码行数统计工具类 * Created by 孙义朗 on 2017/11/17 0017 ...

  2. 翻屏类 h5 适配方案:解决宽高自适应难题

    表格 图片等 宽度自适应  :width:100%;  box-sizing: border-box; 基于淘宝适配方案flexible + 翻屏h5 适配方案adaptive flexible解读及 ...

  3. php对图片加水印--将图片先缩小,再在上面加水印

    方法: /**  * 图片加水印(适用于png/jpg/gif格式)  *  * @author flynetcn  *  * @param $srcImg  原图片  * @param $water ...

  4. JavaScript使用Object.defineProperty方法实现双数据绑定

    Object.defineProperty这个方法非常值得学习,很多mvc框架中的双向数据绑定就是通过它来实现的. 本着互联网分享精神,今天我就将我自己的见解分享给大家,希望能有所帮助. 开始使用 O ...

  5. golang学习之生成代码文档

    go doc 工具会从 Go 程序和包文件中提取顶级声明的首行注释以及每个对象的相关注释,并生成相关文档. 一般用法: go doc package 获取包的文档注释,例如:go doc fmt 会显 ...

  6. SpringMVC国际化配置

    一.什么是国际化: 国际化是设计软件应用的过程中应用被使用与不同语言和地区 国际化通常采用多属性文件的方式解决,每个属性文件保存一种语言的文字信息,    不同语言的用户看到的是不同的内容 二.spr ...

  7. docker容器启动时执行脚本 run /bin/bash执行多条指令

    搜了很多资料发现并未解决,以下方法失败!求大神评论给出完美方案 1.首先需要编写需要启动的脚本,并将脚本放在 /etc/init.d/目录下 如:cs.sh 2.修改权限 3.chkconfig -- ...

  8. mysql case when的使用

    SELECT (CASE payType WHEN 1 THEN '微信' WHEN 2 THEN '支付宝' ELSE '余额' END) as type, count(payType) FROM ...

  9. vscode 快速生成html

    在Hbuilder中新建一个htm自动会生成一个标准的html代码,那在vscode得一行一行写吗?太烦了吧,各种关键词搜,哎妈 终于找到了办法,现在这里记录下: 第一步:在空文档中输入   ! 第二 ...

  10. 理解JS表达式

    表达式:是由运算元和运算符(可选)构成,并产生运算结果的语法结构. 基本表达式 以下在ES5中被称为基本表达式(Primary Expression) this.null.arguments等内置的关 ...