前文传送门:

「Python 图像处理 OpenCV (1):入门」

「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」

「Python 图像处理 OpenCV (3):图像属性、图像感兴趣 ROI 区域及通道处理」

「Python 图像处理 OpenCV (4):图像算数运算以及修改颜色空间」

「Python 图像处理 OpenCV (5):图像的几何变换」

图像的阈值

看到这个词可能大家都很懵,为啥在图像处理里面还会有阈值。

图像的阈值处理用大白话讲就是将图像转化为二值图像(黑白图),目的是用来提取图像中的目标物体,将背景和噪声区分开(可以近似的认为除了目标全是噪声)。

通常会设定一个阈值 T ,通过 T 将图像的像素划分为两类:大于 T 的像素群和小于 T 的像素群。

首先可以先将图像转化为灰度图像,因为在灰度图像中,每个像素都只有一个灰度值用来表示当前像素的亮度。

接下来二值化处理可以将图像中的像素划分为两类颜色,一种是大于阈值 T 的,另一种是小于阈值 T 的。

比如最常见的二值图像:

当灰度值小于阈值 T 的时候,可以将其像素设置为 0 ,表示为黑色。

当灰度值大于阈值 T 的时候,可以将其像素设置为 255 ,表示为白色。

在 OpenCV 中,为我们提供了阈值函数 threshold() 来帮助我们实现二值图像的处理。

函数如下:

retval, dst = threshold(src, thresh, maxval, type, dst=None)
  • retval: 阈值
  • dst: 处理后的图像
  • src: 原图像
  • thresh: 阈值
  • maxval: 最大值
  • type: 处理类型

常用的 5 中处理类型如下:

  • cv.THRESH_BINARY: 二值处理
  • cv.THRESH_BINARY_INV: 反二值处理
  • cv.THRESH_TRUNC: 截断阈值化
  • cv.THRESH_TOZERO: 阈值化为 0
  • cv.THRESH_TOZERO_INV: 反阈值化为 0

接下来这几种处理类型有啥不同,我们一个一个来看。

二值处理

这种二值处理方式最开始需要选定一个阈值 T ,从 0 ~ 255 之间,我这里选择出于中间的那个数 127 。

接下来的处理规则就是这样的:

  • 大于等于 127 的像素点的灰度值设定为最大值,也就是 255 白色
  • 小于 127 的像素点的灰度值设定为 0 ,也就是黑色

接下来开始写代码,看我们的马里奥同学(不知道你们还记不记得我们的马里奥同学):

import cv2 as cv

src = cv.imread("maliao.jpg")

# BGR 图像转灰度
gray_img = cv.cvtColor(src, cv.COLOR_BGR2GRAY) # 二值图像处理
r, b = cv.threshold(gray_img, 127, 255, cv.THRESH_BINARY) # 显示图像
cv.imshow("src", src)
cv.imshow("result", b) # 等待显示
cv.waitKey(0)
cv.destroyAllWindows()

反二值处理

这种方式和上面的二值处理非常相似,只是把处理规则给反了一下:

  • 大于等于 127 的像素点的灰度值设定为 0 ,也就是白色
  • 小于 127 的像素点的灰度值设定为最大值,也就是 255 白色

完整代码如下:

import cv2 as cv

src = cv.imread("maliao.jpg")

# BGR 图像转灰度
gray_img = cv.cvtColor(src, cv.COLOR_BGR2GRAY) # 二值图像处理
r, b = cv.threshold(gray_img, 127, 255, cv.THRESH_BINARY_INV) # 显示图像
cv.imshow("src", src)
cv.imshow("result", b) # 等待显示
cv.waitKey(0)
cv.destroyAllWindows()

从图像上可以看到,颜色和上面的二值图像正好相反,大部分的位置都变成了白色。

截断阈值化

这种方法还是需要先选定一个阈值 T ,图像中大于该阈值的像素点被设定为该阈值,小于该阈值的保持不变。

完整代码如下:

import cv2 as cv

src = cv.imread("maliao.jpg")

# BGR 图像转灰度
gray_img = cv.cvtColor(src, cv.COLOR_BGR2GRAY) # 二值图像处理
r, b = cv.threshold(gray_img, 127, 255, cv.THRESH_TRUNC) # 显示图像
cv.imshow("src", src)
cv.imshow("result", b) # 等待显示
cv.waitKey(0)
cv.destroyAllWindows()

这种方式实际上是把图片比较亮的像素处理成为阈值,其他部分保持不变。

阈值化为 0

这种方式还是需要先选定一个阈值 T ,将小于 T 的像素点设置为 0 黑色,其他的保持不变。

完整代码如下:

import cv2 as cv

src = cv.imread("maliao.jpg")

# BGR 图像转灰度
gray_img = cv.cvtColor(src, cv.COLOR_BGR2GRAY) # 二值图像处理
r, b = cv.threshold(gray_img, 127, 255, cv.THRESH_TOZERO) # 显示图像
cv.imshow("src", src)
cv.imshow("result", b) # 等待显示
cv.waitKey(0)
cv.destroyAllWindows()

这个方法是亮的部分不改,把比较暗的部分修改为 0 。

反阈值化为 0

这个和前面的反二值图像很像,同样是反阈值化为 0 ,将大于等于 T 的像素点变为 0 ,其余保持不变。

完整代码如下:

import cv2 as cv

src = cv.imread("maliao.jpg")

# BGR 图像转灰度
gray_img = cv.cvtColor(src, cv.COLOR_BGR2GRAY) # 二值图像处理
r, b = cv.threshold(gray_img, 127, 255, cv.THRESH_TOZERO_INV) # 显示图像
cv.imshow("src", src)
cv.imshow("result", b) # 等待显示
cv.waitKey(0)
cv.destroyAllWindows()

这个方法是暗的部分不改,把比较亮的部分修改为 0 。

全家福

接下来还是给这几种阈值处理后的图像来个全家福,让大家能有一个直观的感受,代码我也给出来,如下:

import cv2 as cv
import matplotlib.pyplot as plt # 读取图像
img=cv.imread('maliao.jpg')
lenna_img = cv.cvtColor(img,cv.COLOR_BGR2RGB)
gray_img=cv.cvtColor(img,cv.COLOR_BGR2GRAY) # 阈值化处理
ret1, thresh1=cv.threshold(gray_img, 127, 255, cv.THRESH_BINARY)
ret2, thresh2=cv.threshold(gray_img, 127, 255, cv.THRESH_BINARY_INV)
ret3, thresh3=cv.threshold(gray_img, 127, 255, cv.THRESH_TRUNC)
ret4, thresh4=cv.threshold(gray_img, 127, 255, cv.THRESH_TOZERO)
ret5, thresh5=cv.threshold(gray_img, 127, 255, cv.THRESH_TOZERO_INV) # 显示结果
titles = ['Gray Img','BINARY','BINARY_INV','TRUNC','TOZERO','TOZERO_INV']
images = [gray_img, thresh1, thresh2, thresh3, thresh4, thresh5] # matplotlib 绘图
for i in range(6):
plt.subplot(2, 3, i+1), plt.imshow(images[i],'gray')
plt.title(titles[i])
plt.xticks([]),plt.yticks([]) plt.show()

示例代码

如果有需要获取源码的同学可以在公众号回复「OpenCV」进行获取。

参考

https://blog.csdn.net/Eastmount/article/details/83548652

http://www.woshicver.com/

Python 图像处理 OpenCV (6):图像的阈值处理的更多相关文章

  1. Python 图像处理 OpenCV (14):图像金字塔

    前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...

  2. Python 图像处理 OpenCV (15):图像轮廓

    前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...

  3. Python 图像处理 OpenCV (16):图像直方图

    前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...

  4. Python 图像处理 OpenCV (3):图像属性、图像感兴趣 ROI 区域及通道处理

    前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 图像属性 图像 ...

  5. Python 图像处理 OpenCV (4):图像算数运算以及修改颜色空间

    前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...

  6. Python 图像处理 OpenCV (5):图像的几何变换

    前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...

  7. Python 图像处理 OpenCV (7):图像平滑(滤波)处理

    前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...

  8. Python 图像处理 OpenCV (9):图像处理形态学开运算、闭运算以及梯度运算

    前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...

  9. Python 图像处理 OpenCV (10):图像处理形态学之顶帽运算与黑帽运算

    前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...

随机推荐

  1. 什么是virtual string tree?

    Virtual stringtree(以后简称VST)是一个提供源码的免费的第三方插件,支持DELPHI和C++builder,可在http://www.soft-gems.net/下载到最新的版本. ...

  2. React的第二种使用方法----脚手架方式

    一.React的第二种使用方法-----脚手架 1.前提:Node.js >8.10 2.下载全局脚手架工具 npm  i  -g  create-react-app 3.运行全局脚手架工具,创 ...

  3. day04:购物车的练习(20170216)

    product_list = [ ('IPhone',5900), ('Mac pro',9800), ('Bike',800), ('Watch',16000), ('Coffee',35), (' ...

  4. LinkedList详解-源码分析

    LinkedList详解-源码分析 LinkedList是List接口的第二个具体的实现类,第一个是ArrayList,前面一篇文章已经总结过了,下面我们来结合源码,学习LinkedList. 基于双 ...

  5. 索引 'GXHRCS.PK_A253' 或这类索引的分区处于不可用状态

    ORA-01502: 索引 'GXHRCS.PK_A253' 或这类索引的分区处于不可用状态 http://blog.sina.com.cn/s/blog_7ab8d2720101ozw6.html ...

  6. Oracle数据库连接、存储过程及调用

    Oracle数据库连接.存储过程及调用 1. 定义一个存储过程 create or replace procedure getuser(eid in number, na out varchar, e ...

  7. BZOJ1010单调性DP优化

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 10707  Solved: 4445[Submit][S ...

  8. [MSSQL] [EntityFramework(.Net Core)] 自增长id字段,无法插入数据

    IDENTITY_INSERT 为 OFF,无法插入数据, 类似的错误,解决记录: 网上查了下,都是 Code First 模式下的解决方案, 如:在 DBContext 的 OnModelCreat ...

  9. 【ubuntu】开机一直“/dev/sda3:clean, XXX files, XXXX blocks”解决方法

    由于该电脑是实验室公用跑模型的机子,在解决过程中,发现是 cuda 导致一直进不了系统.原因是装了两个不同版本的cuda,一个9.2,另一个10.0,因为是公用的,目前尚不清楚,怎么同时装上两个的,也 ...

  10. 枚举&注解

    枚举:自定义枚举类 使用Enum关键字定义的枚举类 注解:jdk内置的基本注解类型(3个) 自定义注解类型 对注解进行注解(元注解4个) 利用反射获取注解信息(反射部分涉及) 自定义枚举类: Test ...