通过Spark作业将数据写入Hudi时,Spark应用的调优技巧也适用于此。如果要提高性能或可靠性,请牢记以下几点。

输入并行性:Hudi对输入进行分区默认并发度为1500,以确保每个Spark分区都在2GB的限制内(在Spark2.4.0版本之后去除了该限制),如果有更大的输入,则相应地进行调整。我们建议设置shuffle的并发度,配置项为hoodie.[insert|upsert|bulkinsert].shuffle.parallelism,以使其至少达到input_data_size/500MB。

Off-heap(堆外)内存:Hudi写入parquet文件,需要使用一定的堆外内存,如果遇到此类故障,请考虑设置类似spark.yarn.executor.memoryOverheadspark.yarn.driver.memoryOverhead的值。

Spark 内存:通常Hudi需要能够将单个文件读入内存以执行合并或压缩操作,因此执行程序的内存应足以容纳此文件。另外,Hudi会缓存输入数据以便能够智能地放置数据,因此预留一些spark.memory.storageFraction通常有助于提高性能。

调整文件大小:设置limitFileSize以平衡接收/写入延迟与文件数量,并平衡与文件数据相关的元数据开销。

时间序列/日志数据:对于单条记录较大的数据库/ nosql变更日志,可调整默认配置。另一类非常流行的数据是时间序列/事件/日志数据,它往往更加庞大,每个分区的记录更多。在这种情况下,请考虑通过.bloomFilterFPP()/bloomFilterNumEntries()来调整Bloom过滤器的精度,以加速目标索引查找时间,另外可考虑一个以事件时间为前缀的键,这将使用范围修剪并显着加快索引查找的速度。

GC调优:请确保遵循Spark调优指南中的垃圾收集调优技巧,以避免OutOfMemory错误。[必须]使用G1 / CMS收集器,其中添加到spark.executor.extraJavaOptions的示例如下:

-XX:NewSize=1g -XX:SurvivorRatio=2 -XX:+UseCompressedOops -XX:+UseConcMarkSweepGC -XX:+UseParNewGC -XX:CMSInitiatingOccupancyFraction=70 -XX:+PrintGCDetails -XX:+PrintGCTimeStamps -XX:+PrintGCDateStamps -XX:+PrintGCApplicationStoppedTime -XX:+PrintGCApplicationConcurrentTime -XX:+PrintTenuringDistribution -XX:+HeapDumpOnOutOfMemoryError -XX:HeapDumpPath=/tmp/hoodie-heapdump.hprof

OutOfMemory错误:如果出现OOM错误,则可尝试通过如下配置处理:spark.memory.fraction = 0.2,spark.memory.storageFraction = 0.2允许其溢出而不是OOM(速度变慢与间歇性崩溃相比)。

以下是完整的生产配置

spark.driver.extraClassPath /etc/hive/conf
spark.driver.extraJavaOptions -XX:+PrintTenuringDistribution -XX:+PrintGCDetails -XX:+PrintGCDateStamps -XX:+PrintGCApplicationStoppedTime -XX:+PrintGCApplicationConcurrentTime -XX:+PrintGCTimeStamps -XX:+HeapDumpOnOutOfMemoryError -XX:HeapDumpPath=/tmp/hoodie-heapdump.hprof
spark.driver.maxResultSize 2g
spark.driver.memory 4g
spark.executor.cores 1
spark.executor.extraJavaOptions -XX:+PrintFlagsFinal -XX:+PrintReferenceGC -verbose:gc -XX:+PrintGCDetails -XX:+PrintGCTimeStamps -XX:+PrintAdaptiveSizePolicy -XX:+UnlockDiagnosticVMOptions -XX:+HeapDumpOnOutOfMemoryError -XX:HeapDumpPath=/tmp/hoodie-heapdump.hprof
spark.executor.id driver
spark.executor.instances 300
spark.executor.memory 6g
spark.rdd.compress true spark.kryoserializer.buffer.max 512m
spark.serializer org.apache.spark.serializer.KryoSerializer
spark.shuffle.service.enabled true
spark.sql.hive.convertMetastoreParquet false
spark.submit.deployMode cluster
spark.task.cpus 1
spark.task.maxFailures 4 spark.yarn.driver.memoryOverhead 1024
spark.yarn.executor.memoryOverhead 3072
spark.yarn.max.executor.failures 100

调优 | Apache Hudi应用调优指南的更多相关文章

  1. 使用Apache Hudi构建大规模、事务性数据湖

    一个近期由Hudi PMC & Uber Senior Engineering Manager Nishith Agarwal分享的Talk 关于Nishith Agarwal更详细的介绍,主 ...

  2. linux+jre+apache+mysql+tomcat调优

    一.不再为Apache进程淤积.耗尽内存而困扰 0. /etc/my.cnf,在mysqld那一段加上如下一行: log-slow-queries=queries-slow.log 重启MySQL 酌 ...

  3. 【译】调优Apache Kafka集群

    今天带来一篇译文“调优Apache Kafka集群”,里面有一些观点并无太多新颖之处,但总结得还算详细.该文从四个不同的目标出发给出了各自不同的参数配置,值得大家一读~ 原文地址请参考:https:/ ...

  4. OCM_第十四天课程:Section6 —》数据库性能调优_各类索引 /调优工具使用/SQL 优化建议

    注:本文为原著(其内容来自 腾科教育培训课堂).阅读本文注意事项如下: 1:所有文章的转载请标注本文出处. 2:本文非本人不得用于商业用途.违者将承当相应法律责任. 3:该系列文章目录列表: 一:&l ...

  5. LAMP 系统性能调优之网络文件系统调优

    LAMP 系统性能调优之网络文件系统调优 2011-03-21 09:35 Sean A. Walberg 网络转载 字号:T | T 使用LAMP系统的用户,都想把自己LAMP性能提高运行的速度提高 ...

  6. 重磅!Vertica集成Apache Hudi指南

    1. 摘要 本文演示了使用外部表集成 Vertica 和 Apache Hudi. 在演示中我们使用 Spark 上的 Apache Hudi 将数据摄取到 S3 中,并使用 Vertica 外部表访 ...

  7. 使用Apache Hudi + Amazon S3 + Amazon EMR + AWS DMS构建数据湖

    1. 引入 数据湖使组织能够在更短的时间内利用多个源的数据,而不同角色用户可以以不同的方式协作和分析数据,从而实现更好.更快的决策.Amazon Simple Storage Service(amaz ...

  8. Apache Hudi使用简介

    Apache Hudi使用简介 目录 Apache Hudi使用简介 数据实时处理和实时的数据 业务场景和技术选型 Apache hudi简介 使用Aapche Hudi整体思路 Hudi表数据结构 ...

  9. Apache Hudi C位!云计算一哥AWS EMR 2020年度回顾

    1. 概述 成千上万的客户在Amazon EMR上使用Apache Spark,Apache Hive,Apache HBase,Apache Flink,Apache Hudi和Presto运行大规 ...

随机推荐

  1. 【前端背景UI】鼠标磁性动态蜘蛛网背景源码

    <div style="float:right;" id="hub_iframe"></div> <script type=&qu ...

  2. 浅谈HTTP和HTTPS

    HTTP和HTTPS协议 网络协议:计算机之间为了实现网络通信而达成的一种“约定”或“规则”,有了这种“约定”,不同厂商的生产设备,以及不同不同操作系统组成的计算机之间,就可以实现通信. HTTP(H ...

  3. Redux:pre

    If you aren't familiar with state management libraries like Redux or MobX, don't use context. For ma ...

  4. node的fs模块

    node的file system模块提供的api有同步和异步两种模式(大多数情况下都是用的异步方法,毕竟异步是node的特色,至于提供同步方法,可能应用程序复杂的时候有些场景使用同步会比较合适).异步 ...

  5. mysql小白系列_08 zabbix3.2.6概念及部署

    一 zabbix功能简介 1.zabbix三大监控组件 zabbix server web gui database zabbix_server zabbix proxy agent client 2 ...

  6. BitArray虽好,但请不要滥用,又一次线上内存暴增排查

    一:背景 1. 讲故事 前天写了一篇大内存排查在园子里挺火,这是做自媒体最开心的事拉,干脆再来一篇满足大家胃口,上个月我写了一篇博客提到过使用bitmap对原来的List<CustomerID& ...

  7. 王艳 201771010127《面向对象程序设计(java)》第十周学习总结

    一:理论部分. 1.泛型程序设计意味着编写的代码可以被很多不同类型的对象所重用. 1)泛型(参数化类型):在定义类.接口和方法时,通过类型参数指示将要处理的对象类型.如ArrayList类是一个泛型程 ...

  8. 实验三 Java基本程序设计(2)

                                             实验三 Java基本程序设计(2)                                           ...

  9. 201771010120 苏浪浪 面向对象程序设计(Java)第10周

      1.实验目的与要求 (1) 理解泛型概念: (2) 掌握泛型类的定义与使用: (3) 掌握泛型方法的声明与使用: (4) 掌握泛型接口的定义与实现: (5)了解泛型程序设计,理解其用途. 2.实验 ...

  10. 【MySQL】如何解决分库分表遇到的自增主键的问题?

    雪花算法 Redis生成主键