前言

今天练习赛出了这道题,由于我太菜没有在考场上做出来。

翻了题解后,感觉题解讲的并不是十分直观,所以自己写一篇。


题目大意

太长了,不讲了。

数据范围:

\(1\leq N\leq 400\)

\(1\leq C\leq 400\)

\(1\leq A_i,B_i\leq 400\)


解题思路

考虑 \(\text{DP}\)(至于为什么是 \(\text{DP}\) 。。。靠经验吧)

设 \(f[i][j]\) 表示当前 \(\text{DP}\) 到了第 \(i\) 个人,已经发了 \(j\) 个糖果的答案。

那么转移方程为:

\[f[i][j]=\sum_{k=0}^jf[i-1][j-k]\left( \sum_{x=A_i}^{B_i}x^k \right)
\]

这样来理解:

我们枚举一个 \(k\ (0 \leq k \leq j)\),表示我们当前这个人也就是第 \(i\) 个人分到了 \(k\) 个糖果。

我们需要在之前的 \(i-1\) 个人的答案中都乘上当前这个人的贡献:\(\sum\limits_{x=A_i}^{B_i}x^k\)。

这就是转移方程的意义。

此外我们加一个前缀和优化就可以达到 \(O(n^3)\) 的复杂度。


细节注意事项

  • 注意取模的问题,减法记得加一个模数再去模
  • 中间运算记得用 \(\text{long long}\)

参考代码

/*--------------------------------
Author: The Ace Bee
Blog: www.cnblogs.com/zsbzsb
This code is made by The Ace Bee
--------------------------------*/
#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <cstdio>
#include <cctype>
#include <cmath>
#include <ctime>
#define rg register
using namespace std;
template < typename T > inline void read(T& s) {
s = 0; int f = 0; char c = getchar();
while (!isdigit(c)) f |= (c == '-'), c = getchar();
while (isdigit(c)) s = s * 10 + (c ^ 48), c = getchar();
s = f ? -s : s;
} typedef long long LL;
const int p = 1000000007;
const int _ = 410; int n, c, a[_], b[_];
LL pw[_][_], f[_][_]; int main() {
read(n), read(c);
for (rg int i = 1; i <= n; ++i) read(a[i]);
for (rg int i = 1; i <= n; ++i) read(b[i]); for (rg int i = 1; i < _; ++i) pw[i][0] = 1ll;
for (rg int i = 1; i < _; ++i)
for (rg int j = 1; j < _; ++j)
pw[i][j] = 1ll * pw[i][j - 1] * i % p; for (rg int i = 1; i < _; ++i)
for (rg int j = 0; j < _; ++j)
pw[i][j] = (pw[i][j] + pw[i - 1][j]) % p; f[0][0] = 1;
for (rg int i = 1; i <= n; ++i)
for (rg int j = 0; j <= c; ++j)
for (rg int k = 0; k <= j; ++k)
f[i][j] = (f[i][j] + 1ll * f[i - 1][j - k] * (pw[b[i]][k] - pw[a[i] - 1][k] + p) % p) % p; printf("%lld\n", f[n][c]); return 0;
}

完结撒花\(qwq\)

「AT2021」キャンディーとN人の子供 / Children and Candies的更多相关文章

  1. 「BZOJ3600」没有人的算术 替罪羊树+线段树

    题目描述 过长--不想发图也不想发文字,所以就发链接吧-- 没有人的算术 题解 \(orz\)神题一枚 我们考虑如果插入的数不是数对,而是普通的数,这就是一道傻题了--直接线段树一顿乱上就可以了. 于 ...

  2. 零元学Expression Design 4 - Chapter 7 使用内建功能「Clone」来达成Path的影分身之术

    原文:零元学Expression Design 4 - Chapter 7 使用内建功能「Clone」来达成Path的影分身之术 本章所介绍的是便利且快速的内建工具Clone ? 本章所介绍的是便利且 ...

  3. 「MoreThanJava」Day 5:面向对象进阶——继承详解

    「MoreThanJava」 宣扬的是 「学习,不止 CODE」,本系列 Java 基础教程是自己在结合各方面的知识之后,对 Java 基础的一个总回顾,旨在 「帮助新朋友快速高质量的学习」. 当然 ...

  4. 「2014-5-31」Z-Stack - Modification of Zigbee Device Object for better network access management

    写一份赏心悦目的工程文档,是很困难的事情.若想写得完善,不仅得用对工具(use the right tools),注重文笔,还得投入大把时间,真心是一件难度颇高的事情.但,若是真写好了,也是善莫大焉: ...

  5. 「2014-3-18」multi-pattern string match using aho-corasick

    我是擅(倾)长(向)把一篇文章写成杂文的.毕竟,写博客记录生活点滴,比不得发 paper,要求字斟句酌八股结构到位:风格偏杂文一点,也是没人拒稿的.这么说来,arxiv 就好比是 paper 世界的博 ...

  6. jvm系列(十):如何优化Java GC「译」

    本文由CrowHawk翻译,是Java GC调优的经典佳作. 本文翻译自Sangmin Lee发表在Cubrid上的"Become a Java GC Expert"系列文章的第三 ...

  7. 一个「学渣」从零开始的Web前端自学之路

    从 13 年专科毕业开始,一路跌跌撞撞走了很多弯路,做过餐厅服务员,进过工厂干过流水线,做过客服,干过电话销售可以说经历相当的“丰富”. 最后的机缘巧合下,走上了前端开发之路,作为一个非计算机专业且低 ...

  8. spring cloud 入门,看一个微服务框架的「五脏六腑」

    Spring Cloud 是一个基于 Spring Boot 实现的微服务框架,它包含了实现微服务架构所需的各种组件. 注:Spring Boot 简单理解就是简化 Spring 项目的搭建.配置.组 ...

  9. 从 Spring Cloud 看一个微服务框架的「五脏六腑」

    原文:https://webfe.kujiale.com/spring-could-heart/ Spring Cloud 是一个基于 Spring Boot 实现的微服务框架,它包含了实现微服务架构 ...

随机推荐

  1. 【MySQL】完整性约束

    " 目录 not null default unique 单列唯一 联合唯一 primary key 单列主键 复合主键 auto_increment 步长与偏移量 foreign key ...

  2. 基于SILVACO ATLAS的a-IGZO薄膜晶体管二维器件仿真(03)

    今天逛ResearchGate的时候发现了一个不错的Atlas入门教程:Step by step with ATLAS Silvaco点击链接免费下载.. Atlas代码结构 当然可能有一点太基础了. ...

  3. C语言:将s所指字符串中下标为偶数同时ASCII值为奇数的字符删去,-将a所指字符串中的字符和b所指字符串中的字符的顺序交叉,-将形参s所指字符串中的所有数字字符顺序前移,

    //函数fun功能:将s所指字符串中下标为偶数同时ASCII值为奇数的字符删去,s所指串中剩余的字符形成的新串放在t所指的数组中. #include <stdio.h> #include ...

  4. 棍子Sticks(poj_1011)[经典搜索]

    [题意描述] George用相同的长度棍子,将他们随机切成最多64个单位的长度,现在,他想回到原来的状态,但他忘了他原来的多少根,以及他们原本是多长.请帮助他和设计一个程序,计算最小的可能的原始长度. ...

  5. Redis为什么要自己实现一个SDS

    Redis是使用C语言开发的,在C语言中没有字符串这种数据类型,字符串大都是通过字符数组实现的,但是使用字符数组有以下不足: 1. 字符数组的长度都是固定,容易发生空指针2. 获取字符数组的长度的时候 ...

  6. 大盘及策略收益率的公式推导与Python代码

    一.模型前提与假设 设策略总天数为\(n\).第\(t\)日大盘的收盘价为\(P_t\).第\(t\)日的单日收益率为\(r_t\).\(n\)天的累积收益率为\(r_{cum}\) 假设策略仅买卖大 ...

  7. component:(resolve) => require

    resolve => require(['../pages/home.vue'], resolve)这种写法是异步模块获取,打包的时候每次访问这个路由的时候会单调单个文件,按需加载,不过这种写法 ...

  8. 【PAT甲级】1057 Stack (30 分)(分块)

    题意: 输入一个正整数N(<=1e5),接着输入N行字符串,模拟栈的操作,非入栈操作时输出中位数.(总数为偶数时输入偏小的) trick: 分块操作节约时间 AAAAAccepted code: ...

  9. JS获取光标在input 或 texterea 中下标位置

    <textarea placeholder="请输入表达式" id="methodInput" ></textarea> 获取位置: v ...

  10. python字符串操作方法详解

      字符串 字符串序列用于表示和存储文本,python中字符串是不可变对象.字符串是一个有序的字符的集合,用于存储和表示基本的文本信息,一对单,双或三引号中间包含的内容称之为字符串.其中三引号可以由多 ...