题意:求满足gcd(x,y,z)=G,lcm(x,y,z)=L的x,y,z的解的个数。

大致思路:首先如果L % G != 0那么无解,否则令u = L / G,问题变为,gcd(r,s,t)=1,lcm(r,s,t)=u的解的个数。然后将u分解质因数,令u=a1p1*...*akpk,考虑一种质因数ai,它不可能同时出现在r,s,t中,枚举所有情况:(1)只出现在r或s或t中,这3种情况答案都为1 (2)出现在r和s或r和t或s和t中,这3种情况答案都为2(pi-1)+1=2pi-1,所以对每一种因子答案为3*(2pi-1)+3=6pi,由乘法原理,最后答案为6k*p1*p2*...*pk。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
#include<stdio.h>
#include<string.h>
#include<iostream>
#include<stdlib.h>
#include<algorithm>
#include<math.h>
using namespace std;
typedef long long LL;
int b, a;
LL solve() {
    int x = b / a;
    int p[100], c = 0;
    for (int i = 2; (LL)i * i <= x; i ++) {
        while (x % i == 0) {
            p[c ++] = i;
            x /= i;
        }
    }
    if (x > 1) p[c ++] = x;
    p[c ++] = 0;
    LL ans = 1;
    int k = 0, last = 0;
    for (int i = 1; i < c; i ++) {
        if (p[i] != p[i - 1]) {
            k ++;
            ans *= (i - last);
            last = i;
        }
    }
    for (int i = 0; i < k; i ++) ans *= 6;
    return ans;
}
int main(){
    int T;
    cin >> T;
    while (T --) {
        cin >> a >> b;
        if (b % a != 0) puts("0");
        else cout << solve() << endl;
    }
    return 0;
}

[hdu4497]分解质因数的更多相关文章

  1. java分解质因数

      package test; import java.util.Scanner; public class Test19 { /** * 分析:对n进行分解质因数,应先找到一个最小的质数k * 最小 ...

  2. 程序设计入门——C语言 第6周编程练习 1 分解质因数(5分)

    1 分解质因数(5分) 题目内容: 每个非素数(合数)都可以写成几个素数(也可称为质数)相乘的形式,这几个素数就都叫做这个合数的质因数.比如,6可以被分解为2x3,而24可以被分解为2x2x2x3. ...

  3. 【python】将一个正整数分解质因数

    def reduceNum(n): '''题目:将一个正整数分解质因数.例如:输入90,打印出90=2*3*3*5''' print '{} = '.format(n), : print 'Pleas ...

  4. light oj 1236 分解质因数

    题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=70017#problem/H 题意:求满足1<=i<=j<=n ...

  5. 【基础数学】质数,约数,分解质因数,GCD,LCM

    1.质数: 质数(prime number)又称素数,有无限个.一个大于1的自然数,除了1和它本身外,不能整除以其他自然数(质数),换句话说就是该数除了1和它本身以外不再有其他的因数. 2.约数: 如 ...

  6. 将n(0<=n<=10000)的阶乘分解质因数,求其中有多少个m

    给定两个数m,n,其中m是一个素数. 将n(0<=n<=10000)的阶乘分解质因数,求其中有多少个m. 输入 第一行是一个整数s(0<s<=100),表示测试数据的组数 随后 ...

  7. cdoj 1246 每周一题 拆拆拆~ 分解质因数

    拆拆拆~ Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.uestc.edu.cn/#/problem/show/1246 Descri ...

  8. hdu 5428 The Factor 分解质因数

    The Factor  Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://bestcoder.hdu.edu.cn/contests/contest ...

  9. UVa 10622 (gcd 分解质因数) Perfect P-th Powers

    题意: 对于32位有符号整数x,将其写成x = bp的形式,求p可能的最大值. 分析: 将x分解质因数,然后求所有指数的gcd即可. 对于负数还要再处理一下,负数求得的p必须是奇数才行. #inclu ...

随机推荐

  1. echarts使用笔记

    1.解决列文字隔开问题,及文字太长问题解决. yAxis: [ { type : 'category', data : message.data[0].dataone, axisLabel: { in ...

  2. Python冒泡排序算法及其优化

    冒泡排序 所谓冒泡,就是将元素两两之间进行比较,谁大就往后移动,直到将最大的元素排到最后面,接着再循环一趟,从头开始进行两两比较,而上一趟已经排好的那个元素就不用进行比较了.(图中排好序的元素标记为黄 ...

  3. Shellshock远程命令注入(CVE-2014-6271)漏洞复现

    请勿用于非法用法,本帖仅为学习记录 shelshocke简介: shellshock即unix 系统下的bash shell的一个漏洞,Bash 4.3以及之前的版本在处理某些构造的环境变量时存在安全 ...

  4. DataTable运用

    DataTable dataDis.AsEnumerable().Sum(bu => bu["QtyPlan"].ConvertInt32()); ndata.TDefSty ...

  5. mongoDB(一)——mongoDB安装部署和常用shell命令

    1.mongoDB简介 mongoDB 是由C++语言编写的,是一种分布式的面向文档存储的开源nosql数据库.nosql是Not Only SQL的缩写,是对不同于传统的关系型数据库的数据库管理系统 ...

  6. [Abp vNext 入坑分享] - 前言

    一·背景 Abp vnext是 ABP 框架作者所发起一个完全基于 ASP .NET Core框架,截至2020年4月份已经升级到2.5.0版本,根据经验2.0版本以后可以放心的使用在生产环境.类似a ...

  7. Ansible playbook Vault 加密

    Ansible playbook Vault 加密详解与使用案例 主机规划 添加用户账号 说明: 1. 运维人员使用的登录账号: 2. 所有的业务都放在 /app/ 下「yun用户的家目录」,避免业务 ...

  8. 2019-2020-1 20199329《Linux内核原理与分析》第十二周作业

    <Linux内核原理与分析>第十二周作业 一.本周内容概述: 通过编程理解 Set-UID 的运行机制与安全问题 完成实验楼上的<SET-UID程序漏洞实验> 二.本周学习内容 ...

  9. Python3的日期和时间

    2019独角兽企业重金招聘Python工程师标准>>> python 中处理日期时间数据通常使用datetime和time库 因为这两个库中的一些功能有些重复,所以,首先我们来比较一 ...

  10. axios的使用小技巧:如何绕过字符串拼接,直接传递对象

     Vue.js官方推荐使用axios作为发送http请求的工具,在使用axios中,有些小技巧是不容易发现的.当我们不知道这些技巧时,我们可能会使用其他"奇技淫巧",比如,我们很容 ...