【HBase】HBase与MapReduce的集成案例
HBase与MapReducer集成官方帮助文档:http://archive.cloudera.com/cdh5/cdh/5/hbase-1.2.0-cdh5.14.0/book.html
需求
在HBase先创建一张表myuser2 —— create 'myuser2','f1'
,然后读取myuser表中的数据,将myuser表中f1列族下name列和age列的数据写入到表myuser2中
步骤
一、创建maven工程,导入jar包
<repositories>
<repository>
<id>cloudera</id>
<url>https://repository.cloudera.com/artifactory/cloudera-repos/</url>
</repository>
</repositories>
<dependencies>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>2.6.0-mr1-cdh5.14.0</version>
</dependency>
<dependency>
<groupId>org.apache.hbase</groupId>
<artifactId>hbase-client</artifactId>
<version>1.2.0-cdh5.14.0</version>
</dependency>
<dependency>
<groupId>org.apache.hbase</groupId>
<artifactId>hbase-server</artifactId>
<version>1.2.0-cdh5.14.0</version>
</dependency>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>4.12</version>
<scope>test</scope>
</dependency>
<dependency>
<groupId>org.testng</groupId>
<artifactId>testng</artifactId>
<version>6.14.3</version>
<scope>test</scope>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<version>3.0</version>
<configuration>
<source>1.8</source>
<target>1.8</target>
<encoding>UTF-8</encoding>
<!-- <verbal>true</verbal>-->
</configuration>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-shade-plugin</artifactId>
<version>2.2</version>
<executions>
<execution>
<phase>package</phase>
<goals>
<goal>shade</goal>
</goals>
<configuration>
<filters>
<filter>
<artifact>*:*</artifact>
<excludes>
<exclude>META-INF/*.SF</exclude>
<exclude>META-INF/*.DSA</exclude>
<exclude>META-INF/*/RSA</exclude>
</excludes>
</filter>
</filters>
</configuration>
</execution>
</executions>
</plugin>
</plugins>
</build>
二、开发MapReduce程序
定义一个main类——HbaseReadWrite
package cn.itcast.mr.demo1;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.client.Scan;
import org.apache.hadoop.hbase.mapreduce.TableMapReduceUtil;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
public class HbaseReadWrite extends Configured implements Tool {
@Override
public int run(String[] args) throws Exception {
//创建Job对象
Job job = Job.getInstance(super.getConf(), "HbaseMapReduce");
//创建Scan对象,这里如果不设置过滤器,就是全表查询,因为在Mapper类中已经设置了判断条件,所以这里不需要设置过滤器
Scan scan = new Scan();
/**
* 这是自定义Map逻辑的工具类
* 这里需要五个参数:
* tablename 就是 要读取数据的表名
* scan 就是 HBASE 在java代码 实现增删改查时用来设置过滤器,获取数据等的
* 接着就是自己定义的Mapper类,k2和v2的输出类型
* 最后是Job对象
*/
TableMapReduceUtil.initTableMapperJob("myuser",scan,HbaseReadMapper.class, Text.class, Put.class,job);
/**
* 这是自定义Reduce逻辑的工具类
* 这里只需要三个参数即可
* tablename 就是要写入数据的表名
* 然后一个自定义的reduce类和job对象
*/
TableMapReduceUtil.initTableReducerJob("myuser2",HbaseWriteReducer.class,job);
//提交任务
boolean b = job.waitForCompletion(true);
return b?0:1;
}
/**
* main方法,负责run的退出
* @param args
* @throws Exception
*/
public static void main(String[] args) throws Exception {
Configuration configuration = HBaseConfiguration.create();
//一定记得要在configuration中设置zookeeper的地址,否则无法连接
configuration.set("hbase.zookeeper.quorum","node01:2181,node02:2181,node03:2181");
int run = ToolRunner.run(configuration, new HbaseReadWrite(), args);
System.exit(run);
}
}
自定义Mapper逻辑,定义一个Mapper类——HbaseReadMapper
package cn.itcast.mr.demo1;
import org.apache.hadoop.hbase.Cell;
import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.client.Result;
import org.apache.hadoop.hbase.io.ImmutableBytesWritable;
import org.apache.hadoop.hbase.mapreduce.TableMapper;
import org.apache.hadoop.hbase.util.Bytes;
import org.apache.hadoop.io.Text;
import java.io.IOException;
import java.util.List;
public class HbaseReadMapper extends TableMapper<Text, Put> {
/**
*
* @param key ke2输出类型为Text,因为是rowKey
* @param result v2输出类型为Put,因为Hbase插入数据都是Put对象
* @param context
* @throws IOException
* @throws InterruptedException
*/
@Override
protected void map(ImmutableBytesWritable key, Result result, Context context) throws IOException, InterruptedException {
//获取Hbase表中rowKey的字节
byte[] rowKeyBytes = key.get();
//将rowKey字节转换为字符串,因为k2输出类型为Text
String rowKey = Bytes.toString(rowKeyBytes);
//新建Put对象
Put put = new Put(rowKeyBytes);
//获取Hbase所有数据
List<Cell> cells = result.listCells();
//循环遍历到每一条数据
for (Cell cell : cells) {
//获取cell的列族
byte[] family = cell.getFamily();
//获取cell的列
byte[] qualifier = cell.getQualifier();
//判断cell的列族和列值,拿到需要的数据
if ("f1".equals(Bytes.toString(family))){
if ("name".equals(Bytes.toString(qualifier)) || "age".equals(Bytes.toString(qualifier))){
put.add(cell);
}
}
}
//判断Put是否为空
if (!put.isEmpty()){
context.write(new Text(rowKey),put);
}
}
}
自定义Reducer逻辑,定义一个Reducer类——HbaseWriterReduce
package cn.itcast.mr.demo1;
import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.io.ImmutableBytesWritable;
import org.apache.hadoop.hbase.mapreduce.TableReducer;
import org.apache.hadoop.io.Text;
import java.io.IOException;
public class HbaseWriteReducer extends TableReducer<Text, Put, ImmutableBytesWritable> {
/**
*
* @param key 输入值,k2为Text,也就是rowKey
* @param values 输入值,v2为Put
* @param context
* @throws IOException
* @throws InterruptedException
*/
@Override
protected void reduce(Text key, Iterable<Put> values, Context context) throws IOException, InterruptedException {
// ImmutableBytesWritable是用来封装rowKey的
ImmutableBytesWritable immutableBytesWritable = new ImmutableBytesWritable();
// key就是rowKey
immutableBytesWritable.set(key.getBytes());
// 循环遍历拿到每一个put对象,输出即可
for (Put put : values) {
context.write(immutableBytesWritable,put);
}
}
}
三、运行结果
【HBase】HBase与MapReduce的集成案例的更多相关文章
- HBase与Sqoop集成案例
HBase与Sqoop集成 案例:将RDBMS中的数据抽取到HBase中 Step1.配置sqoop-env.sh如下: Step2.在Mysql中创建一张数据库library,一张表book CRE ...
- MapReduce 单词统计案例编程
MapReduce 单词统计案例编程 一.在Linux环境安装Eclipse软件 1. 解压tar包 下载安装包eclipse-jee-kepler-SR1-linux-gtk-x86_64.ta ...
- hadoop笔记之MapReduce的应用案例(利用MapReduce进行排序)
MapReduce的应用案例(利用MapReduce进行排序) MapReduce的应用案例(利用MapReduce进行排序) 思路: Reduce之后直接进行结果合并 具体样例: 程序名:Sort. ...
- hadoop笔记之MapReduce的应用案例(WordCount单词计数)
MapReduce的应用案例(WordCount单词计数) MapReduce的应用案例(WordCount单词计数) 1. WordCount单词计数 作用: 计算文件中出现每个单词的频数 输入结果 ...
- Apache的HBase与cdh的sqoop集成(不建议不同版本之间的集成)
1.修改sqoop的配资文件 2.从mysql导入到hbase(import) bin/sqoop import \ --connect jdbc:mysql://linux-hadoop3.ibei ...
- 基于Hbase数据的Mapreduce程序环境开发
一.实验目标 编写Mapreduce程序,以Hbase表数据为Map输入源,计算结果输出到HDFS或者Hbase表中. 在非CDH5的Hadoop集群环境中,将编写好的Mapreduce程序整个工程打 ...
- hbase自带mapreduce计数表行数功能
$HBASE_HOME/bin/hbase org.apache.hadoop.hbase.mapreduce.RowCounter ‘tablename’ mapreduce来计数,很快的!!!
- Hbase理论&&hbase shell&&python操作hbase&&python通过mapreduce操作hbase
一.Hbase搭建: 二.理论知识介绍: 1Hbase介绍: Hbase是分布式.面向列的开源数据库(其实准确的说是面向列族).HDFS为Hbase提供可靠的底层数据存储服务,MapReduce为Hb ...
- 076 Apache的HBase与cdh的sqoop集成(不建议不同版本之间的集成)
1.修改sqoop的配资文件 2.从mysql导入到hbase(import) bin/sqoop import \ --connect jdbc:mysql://linux-hadoop3.ibei ...
随机推荐
- 第二章:shell变量
查看所有全局和局部变量:delare和set 查看所有全局变量:env 定义环境变量: 用户变量在家目录下的~/.bash_profile和~/.bashrc中设置 全局变量在/etc/profile ...
- python的多线程、多进程、协程用代码详解
前言 文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理. 作者:刘早起早起 PS:如有需要Python学习资料的小伙伴可以加点击下方链 ...
- R - Cow and Message CodeForces - 1307C
思路对了,但是不会写. 等差数列长度不是1就是2,所以不是一个字母就是俩字母,一开始写的时候直接枚举两个字母,然后让次数相乘.这样是不对的,比如abaabb,字母ab的个数应该是3+2+2,因该是每一 ...
- [apue] getopt 可能重排参数
看第21章时,介绍到了解析命令行的神器 getopt,了解了 linux 下处理通用命令行的方法. 命令行可分为参数与选项,其中不带 - 或 -- 前缀的为参数,对一个命令而言数量是固定的,多个参数之 ...
- 今天我们来谈谈绝对定位和相对定位的区别,和需要注意的问题;position:absolute|relative;
首先position:absolute|relative; 前者是绝对定位,后者是相对定位: position属性的四个值: static,relative,fixed,absolute; 重点重点重 ...
- vue2.x学习笔记(五)
接着前面的内容:https://www.cnblogs.com/yanggb/p/12571062.html. 计算属性 模板内的表达式非常便利,但是设计它们的初衷是用于简单运算的.如果在模板中放入太 ...
- [linux][nginx] 常用
原文链接http://www.cnblogs.com/codingcloud/p/5095066.html 启动 启动代码格式:nginx安装目录地址 -c nginx配置文件地址 例如: [root ...
- 简单了解下CAP定理与BASE定理
分布式环境下的各种问题 通信异常 网络不可用风险高,消息丢失.消息延迟非常普遍 网络分区(脑裂) 网络发生异常情况,延迟增加,导致所有组成分布式系统的节点中,只有部分节点之间能够正常通信,而另一些 ...
- 2018版移动端ui规范
计规范是一种将移动端常用控件标准化.统一化的的文档 今天整理了一篇设计规范的文章概论,讲诉中会以ios做介绍,安卓由于开源,平台相对教多不做单一阐述,实际操作的时候,我们不管是做一代还是二次的迭代产品 ...
- 初学者的Pygame安装教程
最近在自学python,在看完了些基础知识之后,准备写个小项目[外星人入侵],这个项目需要安装pygame. 所以就在网上找到了两个下载地址https://bitbucket.org/pygame/p ...