http://poj.org/problem?id=3259

Description

While exploring his many farms, Farmer John has discovered a number of amazing wormholes. A wormhole is very peculiar because it is a one-way path that delivers you to its destination at a time that is BEFORE you entered the wormhole! Each of FJ's farms comprises N (1 ≤ N ≤ 500) fields conveniently numbered 1..NM (1 ≤ M ≤ 2500) paths, and W (1 ≤ W ≤ 200) wormholes.

As FJ is an avid time-traveling fan, he wants to do the following: start at some field, travel through some paths and wormholes, and return to the starting field a time before his initial departure. Perhaps he will be able to meet himself :) .

To help FJ find out whether this is possible or not, he will supply you with complete maps to F (1 ≤ F ≤ 5) of his farms. No paths will take longer than 10,000 seconds to travel and no wormhole can bring FJ back in time by more than 10,000 seconds.

Input

Line 1: A single integer, FF farm descriptions follow. 
Line 1 of each farm: Three space-separated integers respectively: NM, and W 
Lines 2..M+1 of each farm: Three space-separated numbers (SET) that describe, respectively: a bidirectional path between S and E that requires T seconds to traverse. Two fields might be connected by more than one path. 
Lines M+2..M+W+1 of each farm: Three space-separated numbers (SET) that describe, respectively: A one way path from S to E that also moves the traveler back T seconds.

Output

Lines 1..F: For each farm, output "YES" if FJ can achieve his goal, otherwise output "NO" (do not include the quotes).

Sample Input


Sample Output

NO
YES

Hint

For farm 1, FJ cannot travel back in time. 
For farm 2, FJ could travel back in time by the cycle 1->2->3->1, arriving back at his starting location 1 second before he leaves. He could start from anywhere on the cycle to accomplish this.
 

题目大意:

时空旅行,前m条路是双向的,旅行时间为正值,w条路是虫洞,单向的,旅行时间是负值,也就是能回到过去。求从一点出发,判断能否在”过去“回到出发点,即会到出发点的时间是负的。

解题思路:

裸的负权最短路问题,SPFA Bellman-Ford解决。

 #include<iostream>
#include<cstdio>
using namespace std;
#define INF 0x3f3f3f3f
#define N 10100
int nodenum, edgenum, w, original=; //点,边,起点 typedef struct Edge //边
{
int u;
int v;
int cost;
}Edge;//边的数据结构 Edge edge[N];//边 int dis[N];//距离 bool Bellman_Ford()
{
for(int i = ; i <= nodenum; ++i) //初始化
dis[i] = (i == original ? : INF);
int F=;
for(int i = ; i <= nodenum - ; ++i)//进行nodenum-1次的松弛遍历
{
for(int j = ; j <= edgenum*+w; ++j)
{
if(dis[edge[j].v] > dis[edge[j].u] + edge[j].cost) //松弛(顺序一定不能反~)
{
dis[edge[j].v] = dis[edge[j].u] + edge[j].cost;
F=;
}
}
if(!F)
break;
}
//与迪杰斯特拉算法类似,但不是贪心!
//并没有标记数组
//本来松弛已经结束了
//但是因为由于负权环的无限松弛性
bool flag = ; //判断是否含有负权回路
//如果存在负权环的话一定能够继续松弛
for(int i = ; i <= edgenum*+w; ++i)
{
if(dis[edge[i].v] > dis[edge[i].u] + edge[i].cost)
{
flag = ;
break;
}
}
//只有在负权环中才能再松弛下去
return flag;
} int main()
{
int t;
scanf("%d",&t);
while(t--)
{ scanf("%d %d %d", &nodenum, &edgenum, &w); for(int i = ; i <= *edgenum; i+=)//加上道路,双向边
{
scanf("%d %d %d", &edge[i].u, &edge[i].v, &edge[i].cost);
edge[i+].u=edge[i].v;
edge[i+].v=edge[i].u;
edge[i+].cost=edge[i].cost;
}
for(int i =*edgenum+; i <= *edgenum+w; i++)//加上虫洞,单向边,负权
{
scanf("%d %d %d", &edge[i].u, &edge[i].v, &edge[i].cost);
edge[i].cost=-edge[i].cost;
}
if(Bellman_Ford())//没有负环
printf("NO\n");
else
printf("YES\n");
}
return ;
}
 
 
 

poj-3259 Wormholes(无向、负权、最短路之负环判断)的更多相关文章

  1. POJ 3259 Wormholes 虫洞(负权最短路,负环)

    题意: 给一个混合图,求判断是否有负环的存在,若有,输出YES,否则NO.有重边. 思路: 这是spfa的功能范围.一个点入队列超过n次就是有负环了.因为是混合图,所以当你跑一次spfa时发现没有负环 ...

  2. poj 3259 Wormholes : spfa 双端队列优化 判负环 O(k*E)

    /** problem: http://poj.org/problem?id=3259 spfa判负环: 当有个点被松弛了n次,则这个点必定为负环中的一个点(n为点的个数) spfa双端队列优化: 维 ...

  3. [ACM] POJ 3259 Wormholes (bellman-ford最短路径,推断是否存在负权回路)

    Wormholes Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 29971   Accepted: 10844 Descr ...

  4. ACM: POJ 3259 Wormholes - SPFA负环判定

     POJ 3259 Wormholes Time Limit:2000MS     Memory Limit:65536KB     64bit IO Format:%lld & %llu   ...

  5. POJ 3259 Wormholes(最短路径,求负环)

    POJ 3259 Wormholes(最短路径,求负环) Description While exploring his many farms, Farmer John has discovered ...

  6. 最短路(Bellman_Ford) POJ 3259 Wormholes

    题目传送门 /* 题意:一张有双方向连通和单方向连通的图,单方向的是负权值,问是否能回到过去(权值和为负) Bellman_Ford:循环n-1次松弛操作,再判断是否存在负权回路(因为如果有会一直减下 ...

  7. poj - 3259 Wormholes (bellman-ford算法求最短路)

    http://poj.org/problem?id=3259 农夫john发现了一些虫洞,虫洞是一种在你到达虫洞之前把你送回目的地的一种方式,FJ的每个农场,由n块土地(编号为1-n),M 条路,和W ...

  8. poj 3259 Wormholes 判断负权值回路

    Wormholes Time Limit: 2000 MS Memory Limit: 65536 KB 64-bit integer IO format: %I64d , %I64u   Java ...

  9. POJ 3259 Wormholes Bellman_ford负权回路

    Description While exploring his many farms, Farmer John has discovered a number of amazing wormholes ...

  10. POJ 3259 Wormholes(负权环路)

    题意: 农夫约翰农场里发现了很多虫洞,他是个超级冒险迷,想利用虫洞回到过去,看再回来的时候能不能看到没有离开之前的自己,农场里有N块地,M条路连接着两块地,W个虫洞,连接两块地的路是双向的,而虫洞是单 ...

随机推荐

  1. Flink并行度

    并行执行 本节介绍如何在Flink中配置程序的并行执行.FLink程序由多个任务(转换/操作符.数据源和sinks)组成.任务被分成多个并行实例来执行,每个并行实例处理任务的输入数据的子集.任务的并行 ...

  2. Android群英传知识点回顾——第十章:Android性能优化

    10.1 布局优化 10.1.1 Android UI渲染机制 10.1.2 避免Overdraw 10.1.3 优化布局层级 10.1.4 避免嵌套过多无用布局 10.1.5 Hierarchy V ...

  3. Tensorflow Mask-RCNN(三)——实时 检测视频

    参考:https://www.youtube.com/watch?v=lLM8oAsi32g import cv2    import numpy as np              def ran ...

  4. VEH&VCH

    本文99.9%的代码及内容作者:mengwuji 来自:http://www.mengwuji.net/forum.php?mod=viewthread&tid=1371 VEH:向量化异常处 ...

  5. SpingBoot项目搭建(详细)

    SpingBoot (原创:黑小子-余) springboot官网:->点击<- spring官网:->点击<- 一.SpringBoot简介 Spring Boot是由Piv ...

  6. windows server 2012 ftp搭建

    1.安装IIS的时候勾选ftp 2.创建ftp站点,先检查21端口是否开放 一定要勾选身份认证,匿名去掉,不然一直登陆不了,也不提示 一直点下一步, 遇到的坑,第一个:出现“打开ftp服务器上的文件夹 ...

  7. E. Double Elimination (DP)

    题目:传送门 题意:有 2^n 个人进行比赛,对他们编号 1~2^n,起初1和2打,3和4打,5和6打,7和8打...,然后1和2打完胜利的 和 3和4打完胜利的再打一场,1和2打完失败的和3和4打完 ...

  8. 19.3.8 HTML+css 课程

    form 归属于 form 通过id产生联系 ​<form id = "testform" method = "get" action = "s ...

  9. 吴裕雄--天生自然 JAVASCRIPT开发学习:Math(算数) 对象

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...

  10. 最长特殊序列 II

    最长特殊序列 II class Solution { boolean containsSub(String s,String p){ int i,j; for(i=0,j=0;i<p.lengt ...