tensorflow(五)
一、单机编程框架
单机程序是指启动和运行都在一台机器的一个进程中完成,因为没有网络开销,非常适合参数不多、计算量小的模型。
步骤,创建单机数据流图,创建并运行单机会话。
saver = tf.train.Saver()
sess = tf.InteractiveSession()
tf.global_variables_initializer().run() for i in range(1000):
batch_xs,batch_ys = mnist.train.next_batch(100)
sess.run(train_step,feed_dict={x:batch_xs,y_=batch_ys})
if i%100 = 0:
saver.save(sess,'mnist.ckpt')
correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
sess.run(accuracy,feed_dict={x:mnist.test.images,y_:mnist.test.labels})
如果想指定机器上的设备如cpu,gpu
可以使用
with tf.device('/cpu:0'):
……
二、分布式程序编程框架
PS-worker是一种经典的分布式架构,它在大规模分布式机器学习和深度学习中有广泛的应用,tensorFlow提供了对PS-worker的支持。
步骤
(1).pull,各worker根据数据流图的拓扑结构,从PS拉取最新的模型参数
(2).feed,各worker按照一定的规则填充不同批次的批数据
(3).compute,各worker使用相同的模型参数和不同的批数据计算梯度,得出不同的梯度值
(4).push,各worker将上一步计算得到的梯度值推送到PS
(5).update,PS汇总数据,求出梯度平均值后更新模型参数
分布式程序运行步骤 创建集群,创建分布式数据流图,创建分布式会话
集群创建, tf.train.Server(host,job_name,task_index)
将操作放置在目标设备上
with tf.device('/job:PS/task:0'):
weights_1 = tf.Variable()
with tf.device('/job:PS/task:1'):
weights_2 = tf.Variable()
with tf.device('/job:worker/task:1'):
tf.nn.relu()
3.训练机制
同步训练机制
每个worker独立训练,直到所有worker计算出梯度值后进行模型参数的汇总计算,并更新当前训练步的模型参数,计算较快的worker需要阻塞等待计算较慢的worker
y = tf.nn.softmax(tf.nn.xw_plus_b(hid,sm_w,sm_b))
cross_entropy = -tf.reduce_sum(FLAGS.learning_rate)
if FLAGS.sync_replicas:
opt = tf.train.SyncReplicasOptimizer(opt,replicas_to_aggregate=10,total_num_replicas=100,name='mnist_sync')
opt.minimize(cross_entropy,global_step=1)
异步训练机制
每个worker独立训练,计算出梯度值后立即进行模型参数计算,每个worker无阻塞等待其他所有worker的梯度计算完成。
tensorflow(五)的更多相关文章
- TensorFlow(五):手写数字识别加强版
# 该版本的最终识别准确率达到98%以上 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_d ...
- Anaconda安装和卸载+虚拟环境Tensorflow安装以及末尾问题大全(附Anaconda安装包),这一篇就够了!!!
前言 实话说,在自己亲手捣鼓了一下午加一晚上后,本人深深地感受到了对于"Anaconda安装+虚拟环境Tensorflow安装"里面的坑点之多,再加上目前一些博主的资料有点久远,尤 ...
- centos7 手把手从零搭建深度学习环境 (以TensorFlow2.0为例)
目录 一. 搭建一套自己的深度学习平台 二. 安装系统 三. 安装NVIDA组件 四. 安装深度学习框架 TensorFlow 五. 配置远程访问 六. 验收 七. 福利(救命稻草
- tensorflow笔记(五)之MNIST手写识别系列二
tensorflow笔记(五)之MNIST手写识别系列二 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7455233.html ...
- tensorflow入门笔记(五) name_scope和variable_scope
一.上下文管理器(context manager) 上下文管理器是实现了上下文协议的对象,主要用于资源的获取与释放.上下文协议包括__enter__.__exit__,简单说就是,具备__enter_ ...
- 深度学习(五)基于tensorflow实现简单卷积神经网络Lenet5
原文作者:aircraft 原文地址:https://www.cnblogs.com/DOMLX/p/8954892.html 参考博客:https://blog.csdn.net/u01287127 ...
- tensorflow学习笔记五----------逻辑回归
在逻辑回归中使用mnist数据集.导入相应的包以及数据集. import numpy as np import tensorflow as tf import matplotlib.pyplot as ...
- tensorflow学习笔记五:mnist实例--卷积神经网络(CNN)
mnist的卷积神经网络例子和上一篇博文中的神经网络例子大部分是相同的.但是CNN层数要多一些,网络模型需要自己来构建. 程序比较复杂,我就分成几个部分来叙述. 首先,下载并加载数据: import ...
- TF Boys (TensorFlow Boys ) 养成记(五)
有了数据,有了网络结构,下面我们就来写 cifar10 的代码. 首先处理输入,在 /home/your_name/TensorFlow/cifar10/ 下建立 cifar10_input.py,输 ...
随机推荐
- WebFlux系列(十二)MongoDB应用,新增、修改、查询、删除
#Java#Spring#SpringBoot#Mongo#reactor#webflux#数据库#新增#修改#查询#删除# Spring Boot WebFlux Mongo数据库新增.删除.查询. ...
- event recorder 学习手记
#define EventStopA(slot) EventRecord2 (0xEF20U+EventLevelError+((slot) & 0xFU), ((uint32_t) __FI ...
- maven学习(三)-使用maven来创建项目
转自https://www.cnblogs.com/xdp-gacl/p/4240930.html maven作为一个高度自动化构建工具,本身提供了构建项目的功能,下面就来体验一下使用maven构建项 ...
- 一天一个设计模式——Adapter适配器模式(Wrapper模式)
一.模式说明 在现实生活中,当需要将两种设备连接起来,但是两个设备的接口规范又不一致(比如电脑上只有Type-C接口,但是你的显示器是HDMI接口),这时候就需要一个适配器,适配器一端连接电脑,一端连 ...
- BUUCTF-WEB-easy_tornado
知识点: Python Web 框架:Tornado python中的一个渲染函数:render: 渲染变量到模板中,即可以通过传递不同的参数形成不同的页面. 1. render方法的实质就是生成te ...
- js保留的关键字
js保留的关键字 break else new var case finally return void catch for switch while continue function this w ...
- Java算法练习——寻找两个有序数组的中位数
题目链接 题目描述 给定两个大小为 m 和 n 的有序数组 nums1 和 nums2. 请你找出这两个有序数组的中位数,并且要求算法的时间复杂度为 $O(log(m + n))$. 你可以假设 nu ...
- form——验证器Validators
form表单最大的作用就是验证功能了,通过cleaned_data清洗,我们可以获取传来的值,通过参数.验证器.自定义验证方法,我们可以做到很多的验证. 验证器可用于在不同类型的字段之间重用验证逻辑. ...
- Win10教育版VL版kms密钥激活
1.右键开始图标,或者win+x,选择Windows PowerShell(管理员): 2.依次执行下面的命令,分别表示安装win10教育版密钥,设置kms服务器,激活win10教育版: slmgr ...
- Go get unrecognized import path "gopkg.in/yaml.v2"
安装gin: go get -u github.com/gin-gonic/gin 出现错误: package gopkg.in/yaml.v2: unrecognized import path & ...