LA 3882 经典约瑟夫环问题的数学递推解法
就是经典约瑟夫环问题的裸题
我一开始一直没理解这个递推是怎么来的,后来终于理解了
假设问题是从n个人编号分别为0...n-1,取第k个,
则第k个人编号为k-1的淘汰,剩下的编号为 0,1,2,3...k-2,k,k+1,k+2...
此时因为从刚刚淘汰那个人的下一个开始数起,因此重新编号
把k号设置为0,则
k 0
k+1 1
...
0 n-k
1 n-k+1
假设已经求得了n-1个人情况下的最终胜利者保存在f[n-1]中,则毫无疑问,该胜利者还原到原来的真正编号即为 (f[n-1]+k)%n (因为第二轮重新编号的时候,相当于把每个人的编号都减了k,因此重新+k即可恢复到原来编号)。由此,我们可以想象,当最终只剩下一个人的时候,该人即为胜利者,此时重新编号,因为只有一个人,所以此时f[1]=0
这样f[2]=(f[1]+k)%2,这样就可以求出最终胜利者在2个人的时候的情况下的编号,由递推公式f[n]=(f[n-1]+k)%n,可递推到最初编号序列中该胜利者的编号。
因此用这个方法,只需一遍On的扫描,即可求出最终答案
不过该题要求编号从1开始,只要把f[n]+1即可,同时,该题指定了第一个要删除的人必须为编号为m的人,其实也不难,求出f[n]之后,把原本编号为0的位置移到跟m只相距k的位置即可实现第一次删除的编号为m。所以最终 ans=(f[n]+1+m-k);
当然因为m-k可能为负数,导致整个ans为负,这样其实最后+n即可解决。
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
int n,m,k;
int main()
{
while (scanf("%d%d%d",&n,&k,&m))
{
if (n+m+k==) break;
int s=;
for (int i=;i<=n;i++)
s=(s+k)%i;
int ans;
ans=(m-k+s+)%n;
if (ans<=) ans+=n;
printf("%d\n",ans);
}
return ;
}
LA 3882 经典约瑟夫环问题的数学递推解法的更多相关文章
- 约瑟夫环是一个数学的应用问题:已知n个人(以编号1,2,3...n分别表示)围坐在一张圆桌周围。从编号为k的人开始报数,数到m的那个人出列;他的下一个人又从1开始报数,数到m的那个人又出列;依此规律重复下去,直到圆桌周围的人全部出列。
以数组的方法: public static void main(String[] args) { final int n = 10; final int k = 1; ...
- POJ 3597 种类数 数学+递推
http://poj.org/problem?id=3597 题目大意:把一个正多边形分成数个三角形或者四边形,问有多少种方案. 思路:http://www.cnblogs.com/Ritchie/p ...
- BZOJ-1045 糖果传递 数学+递推
1045: [HAOI2008] 糖果传递 Time Limit: 10 Sec Memory Limit: 162 MB Submit: 2975 Solved: 1327 [Submit][Sta ...
- UVa 10943 (数学 递推) How do you add?
将K个不超过N的非负整数加起来,使它们的和为N,一共有多少种方法. 设d(i, j)表示j个不超过i的非负整数之和为i的方法数. d(i, j) = sum{ d(k, j-1) | 0 ≤ k ≤ ...
- HDU1065 I Think I Need a Houseboat 【数学递推】
I Think I Need a Houseboat Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Ja ...
- ACM学习历程——ZOJ 3822 Domination (2014牡丹江区域赛 D题)(概率,数学递推)
Description Edward is the headmaster of Marjar University. He is enthusiastic about chess and often ...
- ACM学习历程—Hihocoder 1164 随机斐波那契(数学递推)
时间限制:5000ms 单点时限:1000ms 内存限制:256MB 描述 大家对斐波那契数列想必都很熟悉: a0 = 1, a1 = 1, ai = ai-1 + ai-2,(i > 1). ...
- ACM学习历程——HDU4814 Golden Radio Base(数学递推) (12年成都区域赛)
Description Golden ratio base (GRB) is a non-integer positional numeral system that uses the golden ...
- ACM学习历程——HDU4472 Count(数学递推) (12年长春区域赛)
Description Prof. Tigris is the head of an archaeological team who is currently in charge of an exca ...
随机推荐
- 2.python的基本数据类型
(1)整形和浮点型 (2)布尔 (3)字符串 (4)转义 (5)字符串的操作 (6)列表 (7)元组 (8)集合set 特性:无序.不重复 (9)字典
- 前端安全之 XSS攻击
参看: XSS的原理分析与解剖 前端安全 -- XSS攻击 web大前端开发中一些常见的安全性问题 1.前言 XSS 是面试时,hr提出来给我的,然后大体的浏览一遍,今天才查阅资料大体了解了它. XS ...
- 第二十一篇 关联管理器(RelatedManager)
关联管理器(RelatedManager) lass RelatedManager "关联管理器"是在一对多或者多对多的关联上下文中使用的管理器.它存在于下面两种情况: Forei ...
- 自定义 radio 的样式,更改选中样式
思路: 1. 可以为<label>元素添加生成性内容(伪元素),并基于单选按钮的状态来为其设置样式: 2. 然后把真正的单选按钮隐藏起来: 3. 最后把生成内容美化一下. 解决方法: ...
- 【golang】golang文本处理
golang文本字符串操作:包含 合并 连接 分割 取索引 前缀后缀检测 消除字符串 消除空格 golang字符串操作需要用到 strings这个包 str := "hello world& ...
- Loading PDSC Debug Description Failed for STMicroelectronics STM32Lxxxxxxx”
今天在调程序的时候遇到这个问题 解决办法:将安装在MDK下面的文件属性由只读去掉: 成功!可以下载.
- 11 ~ express ~ 解决 cookie 中文报错的问题
使用cookies包需要注意:1,cookie中是不能有中文的,一旦有中文,就会报错2,cookie是通过 中间件的形式直接挂载到 req对象上的,那么cookies有的方法,req.cookies就 ...
- python3.7使用etree遇到的问题
使用python3.6时安装好lxml时按照许多网上的教程来引入会发现etree没被引入进来 解决办法: 一.import lxml.htmletree = lxml.html.etree这样就可以使 ...
- yarn storm spark
单机zookeeper http://coolxing.iteye.com/blog/1871009 storm http://os.51cto.com/art/201309/411003_2.htm ...
- MyBatis整体架构
Mybatis整体架构 基础支持层 反射模块 Java中的反射很强大,但是还是需要封装的.MyBatis专门提供了反射模块,对元素的反射进行了封装,提供了简洁的API,对反射进行了优化,例如缓存了类的 ...