量化投资学习笔记29——《Python机器学习应用》课程笔记03
聚类的实际应用,图像分割。
利用图像的特征将图像分割为多个不相重叠的区域。
常用的方法有阈值分割,边缘分割,直方图法,特定理论(基于聚类,小波分析等)。
实例:利用k-means聚类算法对图像像素点颜色进行聚类以分割图像。
输出:同一聚类的点以相同颜色表示,不同聚类的像素点以不同的颜色表示。
用PIL库从图片中读取像素点的颜色,转化到[0,1]的范围内。
f = open(filePath, "rb")
data = []
img = image.open(f)
m,n = img.size
for i in range(m):
for j in range(n):
x, y, z = img.getpixel((i, j))
data.append([x/256.0, y/256.0, z/256.0])
f.close()
用K-Means算法对像素点颜色数据进行聚类。
imgData, row, col = loadData("test.jpg")
km = KMeans(n_clusters = 3)
label = km.fit_predict(imgData)
label = label.reshape([row, col])
label数据是一维的,转换成与图像相同的形状。
最后输出结果到图片,结果如下:
原图
处理后的图片
本文代码:
https://github.com/zwdnet/MyQuant/blob/master/27
我发文章的四个地方,欢迎大家在朋友圈等地方分享,欢迎点“在看”。
我的个人博客地址:https://zwdnet.github.io
我的知乎文章地址: https://www.zhihu.com/people/zhao-you-min/posts
我的博客园博客地址: https://www.cnblogs.com/zwdnet/
我的微信个人订阅号:赵瑜敏的口腔医学学习园地
量化投资学习笔记29——《Python机器学习应用》课程笔记03的更多相关文章
- 量化投资学习笔记07——python知识补漏
看<量化投资:以python为工具>这本书,第一部分是python的基础知识.这一部分略读了,只看我还不知道或不熟的. 定义复数 x = complex(2, 5) #2+5j 也可以直接 ...
- 量化投资学习笔记01——初识Pyalgotrade量化交易回测框架
年初学习量化投资,一开始想自己从头写,还是受了C/C++的影响.结果困在了计算回测数据那里,结果老也不对,就暂时放下了.最近试了一下python的各个量化投资框架,发现一个能用的——pyalgotra ...
- 【机器学习笔记】Python机器学习基本语法
本来算法没有那么复杂,但如果因为语法而攻不下就很耽误时间.于是就整理一下,搞python机器学习上都需要些什么基本语法,够用就行,可能会持续更新. Python四大类型 元组tuple,目前还没有感受 ...
- 吴恩达《机器学习》课程笔记——第六章:Matlab/Octave教程
上一篇 ※※※※※※※※ [回到目录] ※※※※※※※※ 下一篇 这一章的内容比较简单,主要是MATLAB的一些基础教程,如果之前没有学过matlab建议直接找一本相关书籍,边做边学,matl ...
- 操作系统学习笔记----进程/线程模型----Coursera课程笔记
操作系统学习笔记----进程/线程模型----Coursera课程笔记 进程/线程模型 0. 概述 0.1 进程模型 多道程序设计 进程的概念.进程控制块 进程状态及转换.进程队列 进程控制----进 ...
- 机器学习入门 - Google机器学习速成课程 - 笔记汇总
机器学习入门 - Google机器学习速成课程 https://www.cnblogs.com/anliven/p/6107783.html MLCC简介 前提条件和准备工作 完成课程的下一步 机器学 ...
- css笔记 - 张鑫旭css课程笔记之 float 篇
https://www.imooc.com/t/197450float float的设计初衷/原本作用-是为了实现文字环绕效果如,一个图片和一段文字垂直放置,给图片加上浮动,文字就环绕图片展示了. 浮 ...
- 量化投资学习笔记27——《Python机器学习应用》课程笔记01
北京理工大学在线课程: http://www.icourse163.org/course/BIT-1001872001 机器学习分类 监督学习 无监督学习 半监督学习 强化学习 深度学习 Scikit ...
- 量化投资学习笔记30——《Python机器学习应用》课程笔记04
有监督学习 常用分类算法 KNN:K近邻分类器.通过计算待分类数据点,与已知数据中所有点的距离,取距离最小的前K个点,根据"少数服从多数"的原则,将这个数据点划分为出现次数最多的那 ...
随机推荐
- 翻译——1_Project Overview, Data Wrangling and Exploratory Analysis-checkpoint
为提高提高大学能源效率进行建筑能源需求预测 本文翻译哈佛大学的能源分析和预测报告,这是原文 暂无数据源,个人认为学习分析方法就足够 内容: 项目概述 了解数据 探索性分析 使用不同的机器学习方法进行预 ...
- Spring boot 基于注解方式配置datasource
Spring boot 基于注解方式配置datasource 编辑 Xml配置 我们先来回顾下,使用xml配置数据源. 步骤: 先加载数据库相关配置文件; 配置数据源; 配置sqlSessionF ...
- 1年6亿美元!Uber小费功能或引行业变革
当一个行业由稚嫩走向成熟,必然要在大方向上面对两个选择--一是继续在行业内深挖,二是不断向外围扩张.就像电商行业原本只是纯粹的交易中介形态,现在既不断深挖垂直电商新模式,又继续拓展新业务试图玩转跨界. ...
- Opencv笔记(十五)——图像金字塔
参考文献 目标 学习图像金字塔 学习函数cv2.pyrUp()和cv2.pyrDown() 原理 当我们需要将图像转换到另一个尺寸的时候, 有两种可能,一种是放大图像,另一种是缩小图像.尽管在Open ...
- single-value grouping |limit grouping|cutpoint grouping|Lower class limit|Upper class limit|Class width|Class mark|rounding error or roundoff error|Histograms|Dotplots|Stem-and-Leaf
2.3 Organizing Quantitative Data group quantitative data: To organize quantitative data, we first gr ...
- 代码审计中的SQL注入
0x00 背景 SQL注入是一种常见Web漏洞,所谓SQL注入,就是通过把SQL命令插入到Web表单提交或输入域名或页面请求的查询字符串,最终达到欺骗服务器执行恶意的SQL命令.本文以代码审计的形式研 ...
- springboot学习笔记:12.解决springboot打成可执行jar在linux上启动慢的问题
有时候,当你把你的springboot项目打成可执行的jar,放在linux上启动时,发现启动超级慢: 这往往是因为springboot内置tomcat启动时实例化SecureRandom对象随机数策 ...
- input之按键输入
通过直接操作驱动来监控键盘,只要程序一旦在后台启动,无论在任何页面都可以监控到按键的数值. 步骤如下: 1.找到键盘挂在点:有两种方法 方法一:在 /dev/input路径下通过 cat eve ...
- CentOS-DHCP服务搭建
title date tags layout CentOS6.5 DHCP服务器搭建 2018-08-26 Centos6.5服务器搭建 post 1.安装dhcp软件包 yum install -y ...
- [LC] 121. Best Time to Buy and Sell Stock
Say you have an array for which the ith element is the price of a given stock on day i. If you were ...