安妮 乾明 发自 凹非寺 
本文转载自量子位(QbitAI)

实习生又立功了!

这一次,亮出好成绩的实习生来自地平线,是一名华中科技大学的硕士生。

他作为第一作者完成的研究Mask Scoring R-CNN,在COCO图像实例分割任务上超越了何恺明的Mask R-CNN,拿下了计算机视觉顶会CVPR 2019的口头报告。

也就是说,它从5000多篇投稿中脱颖而出,成为最顶尖的5.6%

无论搭配的基干怎么变,表现一直稳定,总是比Mask R-CNN好一点。

可谓青出于蓝而胜于蓝。

并且,他们的算法已经开源了(传送门在文末)。

给蒙版打分

Mask R-CNN,一种简洁、灵活的实例分割框架,大神何恺明的“拿手作”之一。自2017年一出场就惊艳了四方研究者,何恺明也借此一举拿下ICCV 2017最佳论文奖。

 何恺明

新鲜出炉的Mask Scoring R-CNN,性能是怎样超越前辈的呢?

关键就在名字里的“打分”(Scoring)。这篇论文中,研究人员提出了一种给算法的“实例分割假设”打分的新方法。这个分数打得是否准确,就会影响实例分割模型的性能。

而Mask R-CNN等前辈,用的打分方法就不太合适。

这些模型在实例分割任务里,虽然输出结果是一个蒙版,但打分却是和边界框目标检测共享的,都是针对目标区域分类置信度算出来的分数。

这个分数,和图像分割蒙版的质量可未必一致,用来评价蒙版的质量,可能就会出偏差。

于是,这篇CVPR 2019论文就提出了一种新的打分方法:给蒙版打分,他们称之为蒙版得分(mask score)。

 MS R-CNN架构

Mask Scoring R-CNN中提出的计分方式很简单:不仅仅直接依靠检测得到的分类算分,而且还让模型单独学一个针对蒙版的得分规则:MaskIoU head

MaskIoU head是在经典评估指标AP(平均正确率)启发下得到的,会拿预测蒙版与物体特征进行对比。MaskIoU head同时接收蒙版head的输出与ROI的特征(Region of Interest)作为输入,用一种简单的回归损失进行训练。

最后,同时考虑分类得分与蒙版的质量得分,就可以去评估算法质量了。

评测方法公平公正,实例分割模型性能自然也上去了。

实验证明,在挑战COCO benchmark时,在用MS R-CNN的蒙版得分评估时,在不同基干网路上,AP始终提升近1.5%。

优于Mask R-CNN

下面的表格,是COCO 2017测试集(Test-Dev set)上MS R-CNN和其他实例分割方法的成绩对比。

无论基干网络是纯粹的ResNet-101,还是用了DCN、FPN,MS R-CNN的AP成绩都比Mask R-CNN高出一点几个百分点。

在COCO 2017验证集上,MS R-CNN的得分也优于Mask R-CNN:

作者是谁?

第一作者,名为黄钊金,华中科技大学的硕士生,师从华中科技大学电信学院副教授王兴刚,王兴刚也是这篇论文的作者之一。

其他的作者,分别是地平线的Chang Huang、Yongchao Gong和Lichao Huang。

如果你对这项研究感兴趣,请收好传送门:

Mask Scoring R-CNN论文

https://arxiv.org/abs/1903.00241

GitHub地址
https://github.com/zjhuang22/maskscoring_rcnn

Mask R-CNN的其他优化思路

在此之前,也有人提出了优化Mask R-CNN的思路。

比如,香港中文大学、北京大学、商汤科技、腾讯优图在CVPR 2018发表的一篇论文,提出了一个名为PANet的实例分割框架。

优化了Mask R-CNN中的信息传播,通过加速信息流、整合不同层级的特征,提高了生成预测蒙版的质量。

在未经大批量训练的情况下,就拿下了COCO 2017挑战赛实例分割任务的冠军。

论文地址:

Path Aggregation Network for Instance Segmentation
https://arxiv.org/abs/1803.01534

代码地址:
https://github.com/ShuLiu1993/PANet

---End---

想要了解最新最快最好的论文速递、开源项目和干货资料,欢迎加入CVer学术交流群。涉及图像分类、目标检测、图像分割、人脸检测&识别、目标跟踪、GANs、学术竞赛交流、Re-ID、风格迁移、医学影像分析、姿态估计、OCR、SLAM、场景文字检测&识别和超分辨率等方向。

扫码进群

▲长按关注我们

麻烦给我一个好看

文章转载自公众号

CVPR2019 | 超越Mask R-CNN!华科开源图像实例分割新方法MS R-CNN的更多相关文章

  1. 手把手教你使用LabVIEW实现Mask R-CNN图像实例分割

    前言 前面给大家介绍了使用LabVIEW工具包实现图像分类,目标检测,今天我们来看一下如何使用LabVIEW实现Mask R-CNN图像实例分割. 一.什么是图像实例分割? 图像实例分割(Instan ...

  2. 图像实例分割:CenterMask

    图像实例分割:CenterMask CenterMask: single shot instance segmentation with point representation 论文链家: http ...

  3. 谷歌大脑提出:基于NAS的目标检测模型NAS-FPN,超越Mask R-CNN

    谷歌大脑提出:基于NAS的目标检测模型NAS-FPN,超越Mask R-CNN 朱晓霞发表于目标检测和深度学习订阅 235 广告关闭 11.11 智慧上云 云服务器企业新用户优先购,享双11同等价格 ...

  4. 图像语义分割出的json文件和原图,用plt绘制图像mask

    1.弱监督 由于公司最近准备开个新项目,用深度学习训练个能够自动标注的模型,但模型要求的训练集比较麻烦,,要先用ffmpeg从视频中截取一段视频,在用opencv抽帧得到图片,所以本人只能先用语义分割 ...

  5. 开源图像标注工具labelme的安装使用及汉化

    一 LabelMe简介 labelme是麻省理工(MIT)的计算机科学和人工智能实验室(CSAIL)研发的图像标注工具,人们可以使用该工具创建定制化标注任务或执行图像标注,项目源代码已经开源. 项目开 ...

  6. OpenCV计算机视觉学习(2)——图像算术运算 & 掩膜mask操作(数值计算,图像融合,边界填充)

    在OpenCV中我们经常会遇到一个名字:Mask(掩膜).很多函数都使用到它,那么这个Mask到底是什么呢,下面我们从图像基本运算开始,一步一步学习掩膜. 1,图像算术运算 图像的算术运算有很多种,比 ...

  7. 为什么CNN能自动提取图像特征

    1.介绍 在大部分传统机器学习场景里,我们先经过特征工程等方法得到特征表示,然后选用一个机器学习算法进行训练.在训练过程中,表示事物的特征是固定的. 后来嘛,后来深度学习就崛起了.深度学习对外推荐自己 ...

  8. Tensorflow实现Mask R-CNN实例分割通用框架,检测,分割和特征点定位一次搞定(多图)

    Mask R-CNN实例分割通用框架,检测,分割和特征点定位一次搞定(多图)   导语:Mask R-CNN是Faster R-CNN的扩展形式,能够有效地检测图像中的目标,同时还能为每个实例生成一个 ...

  9. CVPR目标检测与实例分割算法解析:FCOS(2019),Mask R-CNN(2019),PolarMask(2020)

    CVPR目标检测与实例分割算法解析:FCOS(2019),Mask R-CNN(2019),PolarMask(2020)1. 目标检测:FCOS(CVPR 2019)目标检测算法FCOS(FCOS: ...

随机推荐

  1. poj 1027 Ignatius and the Princess II全排列

    Ignatius and the Princess II Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ( ...

  2. CANmonitor我自己编写的程序

    这个版本的程序, 上位机可以对电机的转速进行在线的设定,同时上位机接受电机控制器上报的母线电压,电机温度,控制器温度等. 在调试的过程中我遇见了一个问题,电机的转速的采样 . 根据协议:电机的转速为1 ...

  3. 第三篇:Vue指令

    Vue指令 1.文本指令相关 v-*是Vue指令,会被vue解析,v-text="num"中的num是变量(指令是有限的,不可以自定义) v-text是原样输出渲染内容,渲染控制的 ...

  4. 九、React中的组件、父子组件、React props父组件给子组件传值、子组件给父组件传值、父组件中通过refs获取子组件属性和方法

    一.概述 React中的组件: 解决html 标签构建应用的不足. 使用组件的好处:把公共的功能单独抽离成一个文件作为一个组件,哪里里使用哪里引入. [父子组件]:组件的相互调用中,我们把调用者称为父 ...

  5. 吴裕雄--天生自然C++语言学习笔记:C++ 运算符

    运算符是一种告诉编译器执行特定的数学或逻辑操作的符号.C++ 内置了丰富的运算符,并提供了以下类型的运算符: 算术运算符 关系运算符 逻辑运算符 位运算符 赋值运算符 杂项运算符 算术运算符 下表显示 ...

  6. Elasticsearch 使用集群 - 创建索引

    章节 Elasticsearch 基本概念 Elasticsearch 安装 Elasticsearch 使用集群 Elasticsearch 健康检查 Elasticsearch 列出索引 Elas ...

  7. 线段树&树状数组与离散化的妙用

    牛客2019多校联盟Day7 Fine the median 题意:  每次给数组插入区间[Li,Ri] 内的所有数,每操作一次查询中位数. 遇到这题真的算是巧合,然而就是这种冥冥之中的缘分,给了我线 ...

  8. tensorflow--保存加载模型

    s=mnist.train.next_batch(batch_size)print(xs.shape)print(ys.shape) # #从集合中取全部变量# tf.get_collection() ...

  9. 量化交易回测系统---RQalpha、qstrade学习笔记

    一.RQalpha github 地址  https://github.com/ricequant/rqalpha 1.运行test.py文件,显示 No module named 'logbook. ...

  10. java String字符串判断

    判断空字符串:StringUtils.isBlank StringUtils.isBlank(null) = true StringUtils.isBlank("") = true ...