并查集 & 最小生成树

并查集 Disjoint Sets

什么是并查集

    并查集,在一些有N个元素的集合应用问题中,我们通常是在开始时让每个元素构成一个单元素的集合,然后按一定顺序将属于同一组的元素所在的集合合并,其间要反复查找一个元素在哪个集合中。这一类问题近几年来反复出现在信息学的国际国内赛题中,其特点是看似并不复杂,但数据量极大,若用正常的数据结构来描述的话,往往在空间上过大,计算机无法承受;即使在空间上勉强通过,运行的时间复杂度也极高,根本就不可能在比赛规定的运行时间(1~3秒)内计算出试题需要的结果,只能用并查集来描述。

    并查集(Disjoint Sets)是一种树型的数据结构,用于处理一些不相交集合的合并及查询问题。常常在使用中以森林来表示。(引自百度百科《并查集》)

简单来说,并查集的主要操作有:

   1- 合并两个不相交的集合

   2- 查询两个元素是否属于同一个集合

老样子,先上引例——

NKOJ 1205 亲戚

    或许你并不知道,你的某个朋友是你的亲戚。他可能是你的曾祖父的外公的女婿的外甥女的表姐的孙子。如果能得到完整的家谱,判断两个人是否亲戚应该是可行的,但如果两个人的最近公共祖先与他们相隔好几代,使得家谱十分庞大,那么检验亲戚关系实非人力所能及。在这种情况下,最好的帮手就是计算机。

  为了将问题简化,你将得到一些亲戚关系的信息,如同Marry和Tom是亲戚,Tom和Ben是亲戚,等等。从这些信息中,你可以推出Marry和Ben 是亲戚。请写一个程序,对于我们的关于亲戚关系的提问,以最快的速度给出答案。

输入格式

输入由两部分组成。

第一部分以N,M开始。N为问题涉及的人的个数(1 ≤ N ≤ 20000)。这些人的

编号为1,2,3,…,N。下面有M行(1 ≤ M ≤ 100000),每行有两个数ai, bi,表示已知ai和bi是亲戚。

第二部分以Q开始。以下Q行有Q个询问(1 ≤ Q ≤ 1 000 000),每行为ci,di,表示询问ci和di是否为亲戚。

输出格式

对于每个询问ci, di,若ci和di为亲戚,则输出yes,否则输出no。

样例输入

10  7

2  4

5  7

1  3

8  9

1  2

5  6

2  3

3

3  4

7  10

8  9

样例输出

yes

no

yes

传送门http://oi.nks.edu.cn/zh/Problem/Details?id=1205

    从题目中我们可以得到一些提示,它就是要让我们构建一个关系集合出来,再快速查找两个元素是否位于同一集合,这显然就与并查集的效用十分吻合。

合并的过程是怎样的(图示)?









并查集的工作原理







基于此算法如此高的时间复杂度,我们采用某种特殊的手段来优化它,这也便是并查集的核心内容——路径压缩



下面给出并查集的核心函数:

查询同时路径压缩
int GetFather(int v) {	//查询元素v所在集合的根节点
if (Father[v] == v)return v; //v本身为根
else {
Father[v] = GetFather(Father[v]); //只对v到根这条路径上的节点进行路径压缩
return Father[v];
}
}
合并两个集合
void Merge(int x, int y) {	//合并元素x和元素y所在集合
int fx, fy;
fx = GetFather(x); //先找出x和y所在集合的根
fy = GetFather(y); //两根不相同,说明x和y位于不同集合
if (fx != fy)Father[fx] = fy; //将fy设为fx的父亲,合并两个集合
}

我们回到引例,我们现在可以很轻松地解决此题(伪代码)——

for (i = 1; i <= n; ++ i)Father[i] = i;	//初始化
for (i = 1; i <= m; ++ i) { //读入关系
cin >> x >> y;
Merge(x, y);
}
for (i = 1; i <= q; ++ i) { //回答询问
cin >> x >> y;
if (GetFather(x) == GetFather(y))
cout << "Yes";
else cout << "No";
} (O(m))

#######提供几道并查集的简单练习:

NKOJ 3197 岛屿

NKOJ 1046 关押罪犯

并查集的启发式合并(有缘再补)


最小生成树 Minnimum Spanning Tree(MST)

什么是最小生成树

    一个有 n 个结点连通图的生成树是原图的极小连通子图,且包含原图中的所有 n 个结点,并且有保持图连通的最少的边。最小生成树可以用kruskal(克鲁斯卡尔)算法或prim(普里姆)算法求出。(引自百度百科《最小生成树》)

简言之,最小生成树就是在一个连通图中生成一棵树,刚好连通所有节点,所含边数(或边权总和最小)。

举个栗子,感受一下——

引例:村长的难题

    何老板是某乡村的村长,何老板打算给该村的所有人家都连上网。

    该村有n(1<=n<=1000)户人家,编号1到n。由于地形等原因,只有

m(1<=m<=50000)对人家之间可以相互牵线。在不同人家间牵线的长度不一定相同。比如在Ai与Bi之间牵线需要Ci米长的网线。

    整个村的网络入口在1号人家,何老板的问题是:是否能使得所有人家都连上网?使所有人家都连上网,最少需要多少米网线?

关注这个例子,我们的解法是要用网线连接n户人家,找出一种方案,使得总的长度最少。

我们目测可到样图的最小生成树

可是我们怎么用算法做到呢?

接下来我会介绍三种算法:

 1- Kruskal(克鲁斯卡尔算法)

 2- Prim(普里姆算法)

 3- Boruvka算法

    这三种算法都是基于贪心思想的应用,但其中Kruskal可处理同权边的情况,而Boruvka不可以。

Kruskal

Kruskal算法的基本思想:

    每次选不属于同一生成树的且权值最小的边的顶点,将边加入生成树,并将所在的2个生成树合并,直到只剩一个生成树。

    排序使用Quicksort

    检查是否在同一生成树用并查集

    总时间复杂度O(mlogm),其中m表示边的数量

以下是用Kruskal解决引例的代码:

#define maxm 10003
#define maxn 103
struct node {
int a, b, len; //a,b表示边的两个顶点,len表示长度
}Edge[maxm]; //边的信息
int n, m; //n为顶点数,m为边数
int Father[maxn]; //Father[]存i的父亲节点
bool cmp(node a, node b) { //按边长由小到大排序
return a.len < b.len;
}
void ini() { //初始化
scanf("%d%d", &n, &m);
for (int i = 1; i <= m; ++ i)
scanf("%d%d%d", &Edge[i].a, &Edge[i].b, &Edge[i].len);
for (int i = 1; i <= n; ++ i)Father[i] = i; //初始化并查集
sort(Edge + 1, Edge + m + 1, cmp);
}
int GetFather(int x) { //并查集,用于判断2个顶点是否属于同一个生成树
if (x != Father[x])Father[x] = GetFather(Father[x]);
}
void Kruskal() {
int x, y, k, Cnt, tot; //k为当前边的编号,tot统计最小生成树的边权总和
Cnt = 0; //Cnt统计进行了几次合并,n - 1次合并就得到最小生成树
k = 0;
tot = 0;
while (Cnt < n - 1) { //n个点构成的生成树只有n - 1条边
++ k;
x = GetFather(Edge[k].a);
y = GetFather(Edge[k].b);
if (x != y) {
Father[x] = y; //合并到一个生成树
tot += Edge[k].len;
++ Cnt;
}
}
printf("%d", tot);
}
int main() {
ini();
Kruskal();
return 0;
}

Prim

Prim算法的基本思想:

    任选一个点,加入生成树集合。

    在未加入生成树的点中,找出离生成树距离最近的一个点,将其加入生成树。

    反复上述操作,直到所有点都加入了生成树。

    总时间复杂度O(n^2),其中n为点的个数

以下给出Prim函数代码:

void Prim(int x) {	//开始时任选一点x加入生成树,故一开始树中只有一个点x
int i, j, k, Min;
int Dis[103], Path[103];
for (i = 1; i <= n; ++ i) {
Dis[i] = Map[i][x];
Path[i] = x;
}
for (i = 1; i <= n - 1; ++ i) {
Min = inf;
for (j = 1; j <= n; j += )
if ((Dis[j] != 0) && (Dis[j] < Min) {
Min = Dis[j];
k = j;
}
Dis[k] = 0;
for (j = 1; j <= n; ++ j)
if( Dis[j] > Map[j][k]) {
Dis[j] = Map[j][k];
Path[j] = k;
}
}
}

并查集 & 最小生成树详细讲解的更多相关文章

  1. [APIO2019] [LOJ 3145] 桥梁(分块+并查集)(有详细注释)

    [APIO2019] [LOJ 3145] 桥梁(分块+并查集)(有详细注释) 题面 略 分析 考试的时候就感觉子任务4是突破口,结果却写了个Kruskal重构树,然后一直想怎么在线用数据结构维护 实 ...

  2. 最小生成树详细讲解(一看就懂!) & kruskal算法

    0.前言 因为本人太蒟了 我现在连NOIP的初赛都在胆战心惊 并且我甚至连最小生成树都没有学过 所以这一篇博客一定是最详细的QAQ 哈哈 请您认真看完如果有疏漏之处敬请留言指正 感谢! Thanks♪ ...

  3. ACM: 继续畅通工程-并查集-最小生成树-解题报告

    继续畅通工程 Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Submit Status Descri ...

  4. CodeForces892E 可撤销并查集/最小生成树

    http://codeforces.com/problemset/problem/892/E 题意:给出一个 n 个点 m 条边的无向图,每条边有边权,共 Q 次询问,每次给出 ki​ 条边,问这些边 ...

  5. hdu 1863 畅通工程 (并查集+最小生成树)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1863 畅通工程 Time Limit: 1000/1000 MS (Java/Others)    M ...

  6. CodeForces - 891C: Envy(可撤销的并查集&最小生成树)

    For a connected undirected weighted graph G, MST (minimum spanning tree) is a subgraph of G that con ...

  7. ACM : Travel-并查集-最小生成树 + 离线-解题报告

    Travel Time Limit:1000MS     Memory Limit:131072KB     64bit IO Format:%I64d & %I64u /*题意 给出n[节点 ...

  8. Aizu-2224Save your cats并查集+最小生成树

    Save your cats 题意:存在n个点,有m条边( input中读入的是 边的端点,要先转化为边的长度 ),做一个最小生成树,使得要去除的边的长度总和最小: 思路:利用并查集和求最小生成树的方 ...

  9. ACM: meixiuxiu学图论-并查集-最小生成树-解题报告

    /* 最小生成树,最小环的最大权值按照排序后去构建最小生成树就可以了,注意遇到的第一个根相同的点就记录权值,跳出,生成的环就是最小权值环. */ //AC代码: #include"iostr ...

随机推荐

  1. Visual Studio Code打开后是黑色的什么都没显示

    测试系统:win7 x64. 问题:打开Microsoft VS Code后是黑色的界面并且什么都没有显示. 截图:本来想放一张图片的,因为当时忘记截了,所以这里就忽略了. 解决办法: 需要安装以下三 ...

  2. Iterator接口(遍历器)和for/of循环

    在javascript中表示“集合”的数据结构,主要有Array,Object,Map,Set. Iterator(遍历器)接口是为各种不同的数据结构提供了统一的访问机制.任何数据结构具有Iterat ...

  3. C# BASS音频库 + 频谱基本用法

    效果图: 使用了 BASS.dll.  BASS.NET.dll   和  PeakMeterCtrl.dll 前面两个负责播放   最后一个负责绘制频谱,本文重点讲的是频谱部分,播放音频部分注意一点 ...

  4. Gorm 预加载及输出处理(一)- 预加载应用

    单条关联查询 先创建两个关联模型: // 用户模型 type User struct { gorm.Model Username string `gorm:"type:varchar(20) ...

  5. 结题报告--P5551洛谷--Chino的树学

    题目:点此 题目描述 Chino树是一棵具有某种性质的满二叉树,具体来说,对于这棵树的每一个非叶子节点,它的左子节点(A)(A)(A)的右子节点(C)(C)(C)与它的右子节点(B)(B)(B)的左子 ...

  6. LeetCode专题——详解搜索算法中的搜索策略和剪枝

    本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是LeetCode专题第20篇文章,今天讨论的是数字组合问题. 描述 给定一个int类型的候选集,和一个int类型的target,要求返 ...

  7. Python面向对象之反射,双下方法

    一. 反射 反射的概念是由Smith在1982年首次提出的,主要是指程序可以访问.检测和修改它本身状态或行为的一种能力(自省).这一概念的提出很快引发了计算机科学领域关于应用反射性的研究.它首先被程序 ...

  8. 鸡汤 & 毒鸡汤

    1.别低估任何人. 2.你没那么多观众,别那么累. 3.温和对人对事.不要随意发脾气,谁都不欠你的. 4.现在很痛苦,等过阵子回头看看,会发现其实那都不算事. 5.和对自己有恶意的人绝交.人有绝交,才 ...

  9. 一步一步学习S-MSCKF(一)连续时间IMU误差状态运动模型

    1 IMU真实状态运动模型 状态向量: \(x_{I}=\left[{{_{G}^{I}{q(t)}}^{T},{b_{g}(t)}^{T},{^{G}v_{I}(t)}^{T},{b_{a}(t)} ...

  10. Natas15 Writeup(sql盲注之布尔盲注)

    Natas15: 源码如下 /* CREATE TABLE `users` ( `username` varchar(64) DEFAULT NULL, `password` varchar(64) ...