OpenCV图像增强(python)
为了得到更加清晰的图像我们需要通过技术对图像进行处理,比如使用对比度增强的方法来处理图像,对比度增强就是对图像输出的灰度级放大到指定的程度,获得图像质量的提升。本文主要通过代码的方式,通过OpenCV的内置函数将图像处理到我们理想的结果。
灰度直方图###
灰度直方图通过描述灰度级在图像矩阵中的像素个数来展示图像灰度级的信息,通过灰度直方图的统计我们可以看到每个灰度值的占有率。下面是一个灰度直方图的实现:
import cv2
import numpy as np
import sys
import matplotlib.pyplot as plt
#计算灰度直方图
def calcGrayHist(image):
rows,clos = image.shape
#创建一个矩阵用于存储灰度值
grahHist = np.zeros([256],np.uint64)
print('这是初始化矩阵')
print(grahHist )
for r in range(rows):
for c in range(clos):
#通过图像矩阵的遍历来将灰度值信息放入我们定义的矩阵中
grahHist[image[r][c]] +=1
print('这是赋值后的矩阵')
print(grahHist)
return grahHist
if __name__=="__main__":
image = cv2.imread("../img/aa.jpg",cv2.IMREAD_GRAYSCALE)
grahHist = calcGrayHist(image)
x_range = range(256)
plt.plot(x_range,grahHist,'-',linewidth= 3,c='k')
#设置坐标轴的范围
y_maxValue = np.max(grahHist)
plt.axis([0,255,0,y_maxValue])
#设置标签
plt.xlabel('gray Level')
plt.ylabel("number of pixels")
#显示灰度直方图
plt.show()
运行结果
线性变换###
线性变换的公式为:
\]
图像的线性变换无疑就是利用矩阵的乘法就行线性变换,比如一个矩阵I ,2I,3I (np.unt8 ndarry类型就是unt8类型)就是一个矩阵的变换.
import cv2
import numpy as np
import sys
if __name__=="__main__":
img = cv2.imread("../img/ae.jpg",cv2.IMREAD_GRAYSCALE)
a=2
#线性变换 定义float类型
O = float(a)*img
#数据截取 如果大于255 取 255
O[0>255] = 255
#数据类型的转换
O = np.round(O)
O = O.astype(np.uint8)
cv2.imshow("img",img)
cv2.imshow('enhance',O)
cv2.waitKey(0)
cv2.destroyAllWindows()
运行结果:
灰度级范围越大就代表对比度越高,反之对比度越低视觉上清晰度就越低。我们通过a=2的线性对比度拉伸将灰度级范围扩大到[0,255]之间,如上图我们改变灰度级的范围后图像变的清晰。
直方图正规化###
将图像O中的最小灰度级记为\(O_{min}\),最大灰度级记为\(O_{max}\),假如输出的图像P的灰度级范围为[\(P_{min},P_{max}\)],则O 与 P的关系为:
\]
其中P(r,c)就代表P的第r行第c列的灰度值。这个过程就是直方图的正规化。我们一般令P的范围是[0,255],所以直方图的正规化是在求a,b变换的值的方法,我们可以得到:
\]
下面我们使用OpenCV来实现上面的理论:
import cv2
import numpy as np
import sys
from enhance.GrayHist import mget
if __name__=="__main__":
img = cv2.imread("../img/o3.jpg",cv2.IMREAD_GRAYSCALE)
#求出img 的最大最小值
Maximg = np.max(img)
Minimg = np.min(img)
print(Maximg, Minimg, '-----------')
#输出最小灰度级和最大灰度级
Omin,Omax = 0,255
#求 a, b
a = float(Omax - Omin)/(Maximg - Minimg)
b = Omin - a*Minimg
print(a,b,'-----------')
#线性变换
O = a*img + b
O = O.astype(np.uint8)
#利用灰度直方图进行比较 mget为GrayHist中的写方法
mget(img)
mget(O)
cv2.imshow('img',img)
cv2.imshow('enhance',O)
cv2.waitKey(0)
cv2.destroyAllWindows()
伽玛变换###
将一张图的灰度值归至[0,1]后,对于8位图来说,除以255即可。伽玛变换就是令O(r,c)=\(I(r,c)^\gamma\),0\(\leq r<H,0\leq\)c<W.
当\(\gamma\)等于1时图像不发生变换,而当\(\gamma\)大于0且小于1时就可以增强图像的对比度,相反的当\(\gamma\)大于1时就可以使图像对比度降低。 以下是伽玛变换在OpenCV中的实现:
import cv2
import numpy as np
import sys
# 伽玛变换 power函数实现幂函数
if __name__ == "__main__":
img = cv2.imread("../img/ae.jpg", cv2.IMREAD_GRAYSCALE)
# 归1
Cimg = img / 255
# 伽玛变换
gamma = 0.5
O = np.power(Cimg,gamma)
#效果
cv2.imshow('img',img)
cv2.imshow('O',O)
cv2.waitKey(0)
cv2.destroyAllWindows()
运行结果:
直方图的均衡化###
- 计算图像的灰度直方图
- 计算灰度直方图的累加直方图
- 根据累加的直方图和直方图均衡化的原理得到输入灰度级与输出灰度级之间的映射关系
- 使用循环的方式得到输出图像的每一个像素的灰度级
import cv2
import numpy as np
from enhance.GrayHist import calcGrayHist
#直方图的均衡化
if __name__ == "__main__":
image = cv2.imread("../img/ae.jpg", cv2.IMREAD_GRAYSCALE)
rows,cols = image.shape
#计算灰度直方图
grayHist = calcGrayHist(image)
#计算累加灰度直方图
zeroCumuMoment = np.zeros([256], np.uint32)
for p in range(256):
if p == 0:
zeroCumuMoment[p] = grayHist[0]
else:
zeroCumuMoment[p] = zeroCumuMoment[p-1] + grayHist[p]
#根据累加的灰度直方图得到输入与输出灰度级之间的映射关系
output = np.zeros([256],np.uint8)
cofficient = 256.0/(rows*cols)
for p in range(256):
q = cofficient * float(zeroCumuMoment[p])-1
if q >=0:
output[p] = np.math.floor(q)
else:
output[p] = 0
#得出均衡化图像
equalHistimg = np.zeros(image.shape,np.uint8)
for r in range(rows):
for c in range(cols):
equalHistimg[r][c] = output[image[r][c]]
cv2.imshow('image',image)
cv2.imshow('histimage',equalHistimg)
cv2.waitKey(0)
cv2.destroyAllWindows()
运行结果:
OpenCV图像增强(python)的更多相关文章
- (原)windows8.1上使用opencv for python
转载请注明出处: http://www.cnblogs.com/darkknightzh/p/6204100.html 参考网址: http://www.docs.opencv.org/master/ ...
- OpenCV之Python学习笔记
OpenCV之Python学习笔记 直都在用Python+OpenCV做一些算法的原型.本来想留下发布一些文章的,可是整理一下就有点无奈了,都是写零散不成系统的小片段.现在看 到一本国外的新书< ...
- Ubuntu16.04安装opencv for python/c++
Ubuntu16.04安装opencv for python/c++ 网上关于opencv的安装已经有了不少资料,但是没有一篇资料能让我一次性安装成功,因此花费了大量时间去解决各种意外,希望这篇能给一 ...
- [PyImageSearch] Ubuntu16.04 使用OpenCV和python识别信用卡 OCR
在今天的博文中,我将演示如何使用模板匹配作为OCR的一种形式来帮助我们创建一个自动识别信用卡并从图像中提取相关信用卡数位的解决方案. 今天的博文分为三部分. 在第一部分中,我们将讨论OCR-A字体,这 ...
- 深度学习 + OpenCV,Python实现实时视频目标检测
使用 OpenCV 和 Python 对实时视频流进行深度学习目标检测是非常简单的,我们只需要组合一些合适的代码,接入实时视频,随后加入原有的目标检测功能. 在本文中我们将学习如何扩展原有的目标检测项 ...
- day1 Opencv安装 python 2.7 (32位)
[参考安装步骤] http://opencv-python-tutroals.readthedocs.io/en/latest/index.html http://blog.csdn.net/huru ...
- OpenCV for Python 学习笔记 一
本人的学习笔记主要记录的是学习opencv-python-tutorials这本书中的笔记 今天晚上简单学习OpenCV for Python如何绘图,主要用了这几个函数(这几个函数可在:http:/ ...
- CentOS7配置opencv for python && eclipse c/c++[更新]
更改前的安装过程有些问题,主要是ffmpeg-devel的安装部分,这里重新说一下 两种安装方法: 第一种,直接: # yum install numpy opencv* 这种方法安装了之后,能够在p ...
- OpenCV的Python接口
Python教程系列:http://blog.csdn.net/sunny2038/article/details/9057415 与C++的不同之处:http://developer.51cto.c ...
- OpenCv的python环境搭建
1.python的安装参看 http://www.cnblogs.com/samo/p/6734403.html 2.OpenCv安装.opencv2.4.10可以支持vc10/vc11/vc12,o ...
随机推荐
- 常见字体图标库——font-awesome
1.简介 FontAwesome一种带有网页功能的象形文字语言,并收集在一个集合里.字库中有675个图标,只支持英文搜索,中文地址:http://www.fontawesome.com.cn/ 2.使 ...
- 郑宇以城市计算研究膺选 MIT 科技创新35俊杰 (TR35)
MIT 科技创新35俊杰 (TR35)"> 编者按:<MIT Technology Review>于8月22日发布了令人瞩目的2013年全球杰出青年创新者(MIT TR35 ...
- 02-信贷路由项目rose框架拆分dubbo
项目架构和 rose 框架搭建见 https://www.cnblogs.com/yuanpeng-java/p/9835984.html 1.dubbo 框架架构及组成 2.注册中心安装及配置 h ...
- LIS 问题 二分查找优化
按n=5,a-{4,2,3,1,5}为例 dp的值依次是: INF INF INF INF INF 4 INF INF INF INF 2 INF INF INF INF 2 ...
- 规范化开发和time相关模块
1. 规范化开发 如果在开发的过程中将所有的程序放在一个py文件中,加载时会很慢,同时降低了代码的可读性,查询起来也麻烦 所以要将一个oy文件合理的分成多个py文件,在blog大目录下分为以下几个部分 ...
- django框架基础-视图系统-长期维护
################## 什么是视图? ####################### 视图: 1,一个视图函数(类),简称视图,是一个简单的Python 函数(类),它接受W ...
- 非参数检验|Sign test|Wilcoxon signed rank test|Wilcoxon rank sum test|Bootstrapping
非参数检验条件没有参数,因此就没有分布,利用数据等级之间的差距,依次赋值之后再用参数方法测试.将连续型变量转化为离散型变量,即顺序变量.与参数检验相比,正态分布较弱(p值有可能不显著,浪费信息,比如最 ...
- IE11阅读视图:带给你静心饕餮阅读大餐的片刻
编者按:又到读书日,今天你挤出时间读书了吗?如今,越来越多人在习惯电子阅读,然而总难逃眼花缭乱的干扰信息.Internet Explorer 11新增阅读视图功能,一键开启,给你带给你静心饕餮阅读大餐 ...
- mysql索引详细介绍
博客: https://blog.csdn.net/tongdanping/article/details/79878302#%E4%B8%89%E3%80%81%E7%B4%A2%E5%BC%95% ...
- python3之scrapy数据存储问题(MySQL)
这次我用的是python3.6,scrapy在python2.7,3.5的使用方法都不同所以要特别注意, 列如 在python3.5的开发环境下scrapy 的主爬虫文件可以使用 from urlli ...