Apache Hudi典型应用场景知多少?
1.近实时摄取
将数据从外部源如事件日志、数据库提取到Hadoop数据湖 中是一个很常见的问题。在大多数Hadoop部署中,一般使用混合提取工具并以零散的方式解决该问题,尽管这些数据对组织是非常有价值的。
对于RDBMS摄取,Hudi通过Upserts提供了更快的负载,而非昂贵且低效的批量负载。例如你可以读取MySQL binlog日志或Sqoop增量导入,并将它们应用在DFS上的Hudi表,这比批量合并作业或复杂的手工合并工作流更快/更高效。
对于像Cassandra / Voldemort / HBase这样的NoSQL数据库,即使规模集群不大也可以存储数十亿行数据,此时进行批量加载则完全不可行,需要采用更有效的方法使得摄取速度与较频繁的更新数据量相匹配。
即使对于像Kafka这样的不可变数据源,Hudi也会强制在DFS上保持最小文件大小,从而解决Hadoop领域中的古老问题以便改善NameNode的运行状况。这对于事件流尤为重要,因为事件流(例如单击流)通常较大,如果管理不善,可能会严重损害Hadoop集群性能。
对于所有数据源,Hudi都提供了通过提交将新数据原子化地发布给消费者,从而避免部分提取失败。
2. 近实时分析
通常实时数据集市由专门的分析存储,如Druid、Memsql甚至OpenTSDB提供支持。这对于需要亚秒级查询响应(例如系统监视或交互式实时分析)的较小规模(相对于安装Hadoop)数据而言是非常完美的选择。但由于Hadoop上的数据令人难以忍受,因此这些系统通常最终会被较少的交互查询所滥用,从而导致利用率不足和硬件/许可证成本的浪费。
另一方面,Hadoop上的交互式SQL解决方案(如Presto和SparkSQL),能在几秒钟内完成的查询。通过将数据的更新时间缩短至几分钟,Hudi提供了一种高效的替代方案,并且还可以对存储在DFS上多个更大的表进行实时分析。此外,Hudi没有外部依赖项(例如专用于实时分析的专用HBase群集),因此可以在不增加运营成本的情况下,对更实时的数据进行更快的分析。
3. 增量处理管道
Hadoop提供的一项基本功能是构建基于表的派生链,并通过DAG表示整个工作流。工作流通常取决于多个上游工作流输出的新数据,传统上新生成的DFS文件夹/Hive分区表示新数据可用。例如上游工作流U
可以每小时创建一个Hive分区,并在每小时的末尾(processing_time
)包含该小时(event_time
)的数据,从而提供1小时的数据新鲜度。然后下游工作流D
在U
完成后立即开始,并在接下来的一个小时进行处理,从而将延迟增加到2个小时。
上述示例忽略了延迟到达的数据,即processing_time
和event_time
分开的情况。不幸的是在后移动和物联网前的时代,数据延迟到达是非常常见的情况。在这种情况下,保证正确性的唯一方法是每小时重复处理最后几个小时的数据,这会严重损害整个生态系统的效率。想象下在数百个工作流中每小时重新处理TB级别的数据。
Hudi可以很好的解决上述问题,其通过记录粒度(而非文件夹或分区)来消费上游Hudi表HU
中的新数据,下游的Hudi表HD
应用处理逻辑并更新/协调延迟数据,这里HU
和HD
可以以更频繁的时间(例如15分钟)连续进行调度,并在HD
上提供30分钟的端到端延迟。
为了实现这一目标,Hudi从流处理框架如Spark Streaming、发布/订阅系统如Kafka或数据库复制技术如Oracle XStream中引入了类似概念。若感兴趣可以在此处找到有关增量处理(与流处理和批处理相比)更多优势的更详细说明。
4. DFS上数据分发
Hadoop的经典应用是处理数据,然后将其分发到在线存储以供应用程序使用。例如使用Spark Pipeline将Hadoop的数据导入到ElasticSearch供Uber应用程序使用。一种典型的架构是在Hadoop和服务存储之间使用队列
进行解耦,以防止压垮目标服务存储,一般会选择Kafka作为队列,该架构会导致相同数据冗余存储在DFS(用于对计算结果进行离线分析)和Kafka(用于分发)上。
Hudi可以通过以下方式再次有效地解决此问题:将Spark Pipeline 插入更新输出到Hudi表,然后对表进行增量读取(就像Kafka主题一样)以获取新数据并写入服务存储中,即使用Hudi统一存储。
Apache Hudi典型应用场景知多少?的更多相关文章
- Uber基于Apache Hudi构建PB级数据湖实践
1. 引言 从确保准确预计到达时间到预测最佳交通路线,在Uber平台上提供安全.无缝的运输和交付体验需要可靠.高性能的大规模数据存储和分析.2016年,Uber开发了增量处理框架Apache Hudi ...
- 基于Apache Hudi构建数据湖的典型应用场景介绍
1. 传统数据湖存在的问题与挑战 传统数据湖解决方案中,常用Hive来构建T+1级别的数据仓库,通过HDFS存储实现海量数据的存储与水平扩容,通过Hive实现元数据的管理以及数据操作的SQL化.虽然能 ...
- Apache Hudi使用简介
Apache Hudi使用简介 目录 Apache Hudi使用简介 数据实时处理和实时的数据 业务场景和技术选型 Apache hudi简介 使用Aapche Hudi整体思路 Hudi表数据结构 ...
- 数据湖框架选型很纠结?一文了解Apache Hudi核心优势
英文原文:https://hudi.apache.org/blog/hudi-indexing-mechanisms/ Apache Hudi使用索引来定位更删操作所在的文件组.对于Copy-On-W ...
- 基于Apache Hudi 的CDC数据入湖
作者:李少锋 文章目录: 一.CDC背景介绍 二.CDC数据入湖 三.Hudi核心设计 四.Hudi未来规划 1. CDC背景介绍 首先我们介绍什么是CDC?CDC的全称是Change data Ca ...
- OnZoom 基于Apache Hudi的流批一体架构实践
1. 背景 OnZoom是Zoom新产品,是基于Zoom Meeting的一个独一无二的在线活动平台和市场.作为Zoom统一通信平台的延伸,OnZoom是一个综合性解决方案,为付费的Zoom用户提供创 ...
- KLOOK客路旅行基于Apache Hudi的数据湖实践
1. 业务背景介绍 客路旅行(KLOOK)是一家专注于境外目的地旅游资源整合的在线旅行平台,提供景点门票.一日游.特色体验.当地交通与美食预订服务.覆盖全球100个国家及地区,支持12种语言和41种货 ...
- ZooKeeper学习之路 (七)ZooKeeper设计特点及典型应用场景
ZooKeeper 特点/设计目的 ZooKeeper 作为一个集群提供数据一致的协调服务,自然,最好的方式就是在整个集群中的 各服务节点进行数据的复制和同步. 数据复制的好处 1.容错:一个节点出错 ...
- 搞懂分布式技术6:Zookeeper典型应用场景及实践
搞懂分布式技术6:Zookeeper典型应用场景及实践 一.ZooKeeper典型应用场景实践 ZooKeeper是一个高可用的分布式数据管理与系统协调框架.基于对Paxos算法的实现,使该框架保证了 ...
随机推荐
- 2层感知机(神经网络)实现非线性回归(非线性拟合)【pytorch】
import torch import numpy import random from torch.autograd import Variable import torch.nn.function ...
- python自动化测试开发利器ulipad最佳实践(可写python测试代码也可编写selenium、Appium等)...
介绍 UliPad是一个国人开发的python轻量级编辑器,导向和灵活的编程器.它如类浏览器,代码自动完成许多功能,如:HTML查看器,目录浏览器,向导等. 下载与安装 下载地址:https://py ...
- 使用Node.js的http-serve搭建本地服务器
为什么要使用它? 首先,类似于vue-cli创建的项目,都能够实现浏览器中自动刷新,实时查看项目效果.其中的原理在于,webpack这样的工具启动了一个本地服务器,将本机当作一台服务器,这样在浏览器中 ...
- react 工程起步 安装chrome 开发调试工具 react developer tools 及初建一个react 项目...
1.安装react 开发工具 1.下载 chrome react developer tools 下载地址:https://pan.baidu.com/s/1eSZsXDC 下载好是 ...
- “Too many texture interpolators would be used for ForwardBase pass”
CGPROGRAM 下加一个 #pragma target 4.0 转载于:https://www.cnblogs.com/alps/p/7101092.html
- Ngxin 开启CDN 日志获取不了真实IP的解决办法。
nginx配置里面在http{ 后加入如下两行代码即可: set_real_ip_from 0.0.0.0/0;real_ip_header X-Forwarded-For; 重启nginx生效. 注 ...
- 算法竞赛进阶指南--hamilton路径
// hamilton路径 int f[1 << 20][20]; int hamilton(int n, int weight[20][20]) { memset(f, 0x3f, si ...
- 数学--数论-- HDU -- 2854 Central Meridian Number (暴力打表)
A Central Meridian (ACM) Number N is a positive integer satisfies that given two positive integers A ...
- Jenkins 项目构建
一:新建项目 (1)点击新建,输入项目名称--构建一个自由风格的软件项目,点击ok (2)构建触发器-----设置每两分钟执行一次 其中有5个参数 (*****) 第一个是代表分钟 一小时内的分钟数 ...
- muduo网络库源码学习————原子性操作Atomic.h
原子性操作可以做到比互斥锁更小的开销,在多线程编程中原子性操作是非常有用的.Atomic.h文件位于muduo/base下,代码如下: // Use of this source code is go ...