//2019.07.29-30
1、Keras 是提供一些高度可用神经网络框架的 Python API ,能帮助你快速的构建和训练自己的深度学习模型,它的后端是 TensorFlow 或者 Theano


2、Keras 被认为是构建神经网络的未来,以下是一些它流行的原因:
(1)轻量级和快速开发:Keras的目的是在消除样板代码。几行Keras代码就能比原生的 TensorFlow 代码实现更多的功能。你也可以很轻松的实现 CNN和RNN,并且让它们运行在 CPU 或者 GPU 上面。
(2)框架的“赢者”:Keras是一个API,运行在别的深度学习框架上面。这个框架可以是 TensorFlow 或者 Theano。Microsoft也计划让CNTK作为Keras的一个后端。目前,神经网络框架世界是非常分散的,并且发展非常快。
想象一下,我们每年都要去学习一个新的框架,这是多么的痛苦。到目前为止,TensorFlow 似乎成为了一种潮流,并且越来越多的框架开始为 Keras 提供支持,它可能会成为一种标准。
3、目前,Keras 是成长最快的一种深度学习框架。因为可以使用不同的深度学习框架作为后端,这也使得它成为了流行的一个很大的原因。你可以设想这样一个场景,如果你阅读到了一篇很有趣的论文,并且你想在你自己的数据集上面测试这个模型。让我们再次假设,你对TensorFlow非常熟悉,但是对Theano了解的非常少。那么,你必须使用TensorFlow 对这个论文进行复现,但是这个周期是非常长的。但是,如果现在代码是采用Keras写的,那么你只要将后端修改为TensorFlow就可以使用代码了。这将是对社区发展的一个巨大的推动作用。


4、利用Keras的theano框架搭建一个人工神经网络:
import numpy as np
import pandas as pd
from keras.models import Sequential
from keras.layers import Dense,Activation
from keras.optimizers import SGD
from sklearn.datasets import load_iris #导入Keras人工神经网络搭建模块和导入原始数据
iris=load_iris()
print(iris["target"])
from sklearn.preprocessing import LabelBinarizer
print(LabelBinarizer().fit_transform(iris["target"]))
from sklearn.model_selection import train_test_split
train_data,test_data, train_target, test_target=train_test_split(iris.data,iris.target,test_size=0.2,random_state=1)
labels_train=LabelBinarizer().fit_transform(train_target)
labels_test=LabelBinarizer().fit_transform(test_target)

model=Sequential(
[
Dense(5,input_dim=4),
Activation("relu"),
Dense(3),
Activation("sigmoid"), #搭建数据神经网络的结构(输入输出的形式和数量)
]
)
#model=Sequential()
sgd=SGD(lr=0.01,decay=1e-6,momentum=0.9,nesterov=True)
model.compile(optimizer=sgd,loss="categorical_crossentropy")
model.fit(train_data,labels_train,nb_epoch=200,batch_size=40) #进行数据的训练
print(model.predict_classes(test_data)) #输出测试集的预测结果

keras人工神经网络构建入门的更多相关文章

  1. keras搭建神经网络快速入门笔记

    之前学习了tensorflow2.0的小伙伴可能会遇到一些问题,就是在读论文中的代码和一些实战项目往往使用keras+tensorflow1.0搭建, 所以本次和大家一起分享keras如何搭建神经网络 ...

  2. Keras人工神经网络多分类(SGD)

    import numpy as np import pandas as pd from keras.models import Sequential from keras.layers import ...

  3. neurosolutions 人工神经网络集成开发环境 keras

    人工神经网络集成开发环境 :  http://www.neurosolutions.com/ keras:   https://github.com/fchollet/keras 文档    http ...

  4. 人工神经网络入门(4) —— AFORGE.NET简介

    范例程序下载:http://files.cnblogs.com/gpcuster/ANN3.rar如果您有疑问,可以先参考 FAQ 如果您未找到满意的答案,可以在下面留言:) 0 目录人工神经网络入门 ...

  5. [DL学习笔记]从人工神经网络到卷积神经网络_1_神经网络和BP算法

    前言:这只是我的一个学习笔记,里边肯定有不少错误,还希望有大神能帮帮找找,由于是从小白的视角来看问题的,所以对于初学者或多或少会有点帮助吧. 1:人工全连接神经网络和BP算法 <1>:人工 ...

  6. 开源的c语言人工神经网络计算库 FANN

    这年头机器学习非常的火,神经网络算是机器学习算法中的比较重要的一种.这段时间我也花了些功夫,学了点皮毛,顺便做点学习笔记. 介绍人工神经网络的基本理论的教科书很多.我正在看的是蒋宗礼教授写的<人 ...

  7. 人工神经网络简介和单层网络实现AND运算--AForge.NET框架的使用(五)

    原文:人工神经网络简介和单层网络实现AND运算--AForge.NET框架的使用(五) 前面4篇文章说的是模糊系统,它不同于传统的值逻辑,理论基础是模糊数学,所以有些朋友看着有点迷糊,如果有兴趣建议参 ...

  8. [DL学习笔记]从人工神经网络到卷积神经网络_3_使用tensorflow搭建CNN来分类not_MNIST数据(有一些问题)

    3:用tensorflow搭个神经网络出来 为什么用tensorflow呢,应为谷歌是亲爹啊,虽然有些人说caffe更适合图像啊mxnet效率更高等等,但爸爸就是爸爸,Android都能那么火,一个道 ...

  9. 使用Keras开发神经网络

    一.使用pip安装好tensorflow 二.使用pip安装好Keras 三.构建过程: 1 导入数据 2 定义模型 3 编译模型 4 训练模型 5 测试模型 6 写出程序 1.导入数据 使用皮马人糖 ...

随机推荐

  1. 开关电源ac-dc推荐电路

    在使用AC-DC电源模块SA系列时,如果碰到对模块的输出纹波噪声要求较高或对EMC要求严格的场合,应对模块进行必要的滤波处理使到满足不同环境的特殊要求,以下推荐一滤波电路供参考: 图中各元件的说明:1 ...

  2. 2019年7月22日A股科创板开板首日行情思考

    2019年7月22日A股科创板开板首日行情思考 原因:2019科创板开板交易 盘面:科创板交易活跃,首批上市25只股票大涨,最高达5倍涨幅:主板交投低迷,量能萎缩,大部分股票下跌. 操作:加仓 西安银 ...

  3. 杭电2033 人见人爱A+B

    人见人爱A+B Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Sub ...

  4. EBCDIK,EBCDIC,ASCII,shift JIS間の変換

    http://itdoc.hitachi.co.jp/manuals/3020/3020759580/G5950334.HTM#ID01056

  5. mcast_set_if函数

    #include <errno.h> #include <string.h> #include <net/if.h> #include <sys/ioctl. ...

  6. Hive的安装与基础指令

    一.Hive安装 Hive的安装相对比较简单,Hive是基于Hadoop来使用的,所以搭建Hadoop伪分布式或完全分布式即可,Hive安装过程如下: ①安装并启动Hadoop 在博主的其他博客中有安 ...

  7. sftp和FTP

    sftp 是一个交互式安全文件传输协议的传输程式.它类似于 ftp也叫internet网络文件协议, 但它进行加密传输,比FTP有更高的安全性.下边就简单介绍一下如何远程连接主机,进行文件的上传和下 ...

  8. jqGird错误“decimalSeparator”的解决办法

    在使用jqGrid的过程中,突然出现以下错误: jquery.jqGrid.js:15016 Uncaught TypeError: Cannot read property 'decimalSepa ...

  9. python中的拷贝

    再说拷贝之前先说一说 is 与 == is 的作用是 比较两个引用是否为一个地址 == 是比较两个值 对变量 a  变量 b  都赋值为 2 : a 与 b 的值相等我们都可以理解,但是a与b引用地址 ...

  10. 在javaweb中对于session的使用

    1.初次调用session时: String username="student"; HttpSession session=request.getSession(true);// ...