keras人工神经网络构建入门
//2019.07.29-30
1、Keras 是提供一些高度可用神经网络框架的 Python API ,能帮助你快速的构建和训练自己的深度学习模型,它的后端是 TensorFlow 或者 Theano 。
2、Keras 被认为是构建神经网络的未来,以下是一些它流行的原因:
(1)轻量级和快速开发:Keras的目的是在消除样板代码。几行Keras代码就能比原生的 TensorFlow 代码实现更多的功能。你也可以很轻松的实现 CNN和RNN,并且让它们运行在 CPU 或者 GPU 上面。
(2)框架的“赢者”:Keras是一个API,运行在别的深度学习框架上面。这个框架可以是 TensorFlow 或者 Theano。Microsoft也计划让CNTK作为Keras的一个后端。目前,神经网络框架世界是非常分散的,并且发展非常快。
想象一下,我们每年都要去学习一个新的框架,这是多么的痛苦。到目前为止,TensorFlow 似乎成为了一种潮流,并且越来越多的框架开始为 Keras 提供支持,它可能会成为一种标准。
3、目前,Keras 是成长最快的一种深度学习框架。因为可以使用不同的深度学习框架作为后端,这也使得它成为了流行的一个很大的原因。你可以设想这样一个场景,如果你阅读到了一篇很有趣的论文,并且你想在你自己的数据集上面测试这个模型。让我们再次假设,你对TensorFlow非常熟悉,但是对Theano了解的非常少。那么,你必须使用TensorFlow 对这个论文进行复现,但是这个周期是非常长的。但是,如果现在代码是采用Keras写的,那么你只要将后端修改为TensorFlow就可以使用代码了。这将是对社区发展的一个巨大的推动作用。
4、利用Keras的theano框架搭建一个人工神经网络:
import numpy as np
import pandas as pd
from keras.models import Sequential
from keras.layers import Dense,Activation
from keras.optimizers import SGD
from sklearn.datasets import load_iris #导入Keras人工神经网络搭建模块和导入原始数据
iris=load_iris()
print(iris["target"])
from sklearn.preprocessing import LabelBinarizer
print(LabelBinarizer().fit_transform(iris["target"]))
from sklearn.model_selection import train_test_split
train_data,test_data, train_target, test_target=train_test_split(iris.data,iris.target,test_size=0.2,random_state=1)
labels_train=LabelBinarizer().fit_transform(train_target)
labels_test=LabelBinarizer().fit_transform(test_target)
model=Sequential(
[
Dense(5,input_dim=4),
Activation("relu"),
Dense(3),
Activation("sigmoid"), #搭建数据神经网络的结构(输入输出的形式和数量)
]
)
#model=Sequential()
sgd=SGD(lr=0.01,decay=1e-6,momentum=0.9,nesterov=True)
model.compile(optimizer=sgd,loss="categorical_crossentropy")
model.fit(train_data,labels_train,nb_epoch=200,batch_size=40) #进行数据的训练
print(model.predict_classes(test_data)) #输出测试集的预测结果
keras人工神经网络构建入门的更多相关文章
- keras搭建神经网络快速入门笔记
之前学习了tensorflow2.0的小伙伴可能会遇到一些问题,就是在读论文中的代码和一些实战项目往往使用keras+tensorflow1.0搭建, 所以本次和大家一起分享keras如何搭建神经网络 ...
- Keras人工神经网络多分类(SGD)
import numpy as np import pandas as pd from keras.models import Sequential from keras.layers import ...
- neurosolutions 人工神经网络集成开发环境 keras
人工神经网络集成开发环境 : http://www.neurosolutions.com/ keras: https://github.com/fchollet/keras 文档 http ...
- 人工神经网络入门(4) —— AFORGE.NET简介
范例程序下载:http://files.cnblogs.com/gpcuster/ANN3.rar如果您有疑问,可以先参考 FAQ 如果您未找到满意的答案,可以在下面留言:) 0 目录人工神经网络入门 ...
- [DL学习笔记]从人工神经网络到卷积神经网络_1_神经网络和BP算法
前言:这只是我的一个学习笔记,里边肯定有不少错误,还希望有大神能帮帮找找,由于是从小白的视角来看问题的,所以对于初学者或多或少会有点帮助吧. 1:人工全连接神经网络和BP算法 <1>:人工 ...
- 开源的c语言人工神经网络计算库 FANN
这年头机器学习非常的火,神经网络算是机器学习算法中的比较重要的一种.这段时间我也花了些功夫,学了点皮毛,顺便做点学习笔记. 介绍人工神经网络的基本理论的教科书很多.我正在看的是蒋宗礼教授写的<人 ...
- 人工神经网络简介和单层网络实现AND运算--AForge.NET框架的使用(五)
原文:人工神经网络简介和单层网络实现AND运算--AForge.NET框架的使用(五) 前面4篇文章说的是模糊系统,它不同于传统的值逻辑,理论基础是模糊数学,所以有些朋友看着有点迷糊,如果有兴趣建议参 ...
- [DL学习笔记]从人工神经网络到卷积神经网络_3_使用tensorflow搭建CNN来分类not_MNIST数据(有一些问题)
3:用tensorflow搭个神经网络出来 为什么用tensorflow呢,应为谷歌是亲爹啊,虽然有些人说caffe更适合图像啊mxnet效率更高等等,但爸爸就是爸爸,Android都能那么火,一个道 ...
- 使用Keras开发神经网络
一.使用pip安装好tensorflow 二.使用pip安装好Keras 三.构建过程: 1 导入数据 2 定义模型 3 编译模型 4 训练模型 5 测试模型 6 写出程序 1.导入数据 使用皮马人糖 ...
随机推荐
- codeforces round#613
A题:输出n+1: B题: 题意:就是给n个数,a人全拿,b人拿连续的子段和,如果b人比a人大于等于的话输出NO,反之输出YES 思路:最大子段和,比赛的时候忘记 ll 和 字段和不是遇到负数就重置. ...
- 蓝桥杯-铺瓷砖(dfs)
问题描述 有一长度为N(1< =N< =10)的地板,给定两种不同瓷砖:一种长度为1,另一种长度为2,数目不限.要将这个长度为N的地板铺满,一共有多少种不同的铺法? 例如,长度为4的地面一 ...
- .hpp 文件
.hpp 是 Header Plus Plus 的简写,是 C++程序头文件. 其实质就是将.cpp的实现代码混入.h头文件当中,定义与实现都包含在同一文件,则该类的调用者只需要include该hpp ...
- php封装的mysqli类完整实例
本文实例讲述了php封装的mysqli类.分享给大家供大家参考,具体如下:类: <?php header('content-type:text/html;charset=utf-8'); /* ...
- 并发编程之Event事件
Event事件 用来同步线程之间的状态. 举个例子: 你把一个任务丢到了子线程中,这个任务将异步执行.如何获取到这个任务的执行状态 解决方法: 如果是拿到执行结果 我们可以采用异步回调, 在这里我 ...
- Atom离线插件安装
1.下载原始的插件包 2.解压放入atom的packages文件夹中 3.通过nodejs的npm指令进行安装 运行->cmd 4.重启atom就好了.
- linux 删除 复制 移动
Linux文件类型 - 普通文件 d 目录文件 b 块设备 c 字符设备 l 符号链接文件 p 管道文件pipe s 套接字文件socket 基名:basename 目录名:dirname basen ...
- ORACLE CPU过高的sql查询
1. 根据占用CPU高的进程号来查询这个进程执行的SQL语句: CPU过高的进程号: #首先找到CPU过高的进程号 # top -bn1 是静态找到占用最高的进程 [root@localhost ...
- PostgreSQL存取jsonb
从PostgreSQL 9.3开始,json就成了postgres里的一种数据类型,也就是和varchar.int一样,我们表里的一个字段的类型可以为json了. 与此同时,postgres还提供了j ...
- IntelliJ IDEA 破解之后,用了一段时间后,打开软件提示 no suitable licenses left on the license server
IntelliJ IDEA 破解之后,用了一段时间后,打开软件提示 no suitable licenses left on the license server 需要让我们重新注册,原来是之前的地址 ...