线段树做法很简单,但分块好啊

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#define R(a,b,c) for(register int a = (b); a <= (c); ++ a)
#define nR(a,b,c) for(register int a = (b); a >= (c); -- a)
#define Max(a,b) ((a) > (b) ? (a) : (b))
#define Min(a,b) ((a) < (b) ? (a) : (b))
#define Fill(a,b) memset(a, b, sizeof(a))
#define Abs(a) ((a) < 0 ? -(a) : (a))
#define Swap(a,b) a^=b^=a^=b
#define ll long long //#define ON_DEBUG #ifdef ON_DEBUG #define D_e_Line printf("\n\n----------\n\n")
#define D_e(x) cout << #x << " = " << x << endl
#define Pause() system("pause")
#define FileOpen() freopen("in.txt","r",stdin); #else #define D_e_Line ;
#define D_e(x) ;
#define Pause() ;
#define FileOpen() ; #endif struct ios{
template<typename ATP>ios& operator >> (ATP &x){
x = 0; int f = 1; char c;
for(c = getchar(); c < '0' || c > '9'; c = getchar()) if(c == '-') f = -1;
while(c >= '0' && c <= '9') x = x * 10 + (c ^ '0'), c = getchar();
x*= f;
return *this;
}
}io;
using namespace std; const int N = 100007; int block[N], blockSize;
int a[N], ans[N], tag[N];
inline void Change(int l, int r){
int minn = Min(r, block[l] * blockSize);
R(i,l,minn){
ans[block[i]] -= a[i] ^ tag[block[i]];
a[i] ^= 1;
ans[block[i]] += a[i] ^ tag[block[i]];
}
if(block[l] != block[r]){
R(i, (block[r] - 1) * blockSize + 1, r){
ans[block[i]] -= a[i] ^ tag[block[i]];
a[i] ^= 1;
ans[block[i]] += a[i] ^ tag[block[i]];
}
}
R(i,block[l] + 1, block[r] - 1){
ans[i] = blockSize - ans[i]; // md, wo ge sa bi
tag[i] ^= 1;
}
}
inline int Query(int l, int r){
int sum = 0;
int minn = Min(r, block[l] * blockSize);
R(i,l,minn){
sum += a[i] ^ tag[block[i]];
}
if(block[l] != block[r]){
R(i, (block[r] - 1) * blockSize + 1, r){
sum += a[i] ^ tag[block[i]];
}
}
R(i,block[l] + 1, block[r] - 1){
sum += ans[i]; // I'm so sb
}
return sum;
} int main(){
int n, m;
io >> n >> m;
blockSize = sqrt(n);
R(i,1,n){
block[i] = (i - 1) / blockSize + 1;
}
R(i,1,m){
int opt, l, r;
io >> opt >> l >> r;
if(opt == 0){
Change(l, r);
}
else{
printf("%d\n", Query(l, r));
}
} return 0;
}

Luogu3870 [TJOI2009]开关 (分块)的更多相关文章

  1. 题解 P3870 【[TJOI2009]开关】/基础分块学习小结

    直接进入正题: 分块: 分块分块,就是把一个长串东西,分为许多块,这样,我们就可以在操作一个区间的时候,对于在区间里面完整的块,直接操作块,不完整的直接操作即可,因为不完整,再加上一个块本身就不大,复 ...

  2. P3870 [TJOI2009]开关

    思路 重题 代码 #include <iostream> #include <vector> #include <cstdio> #include <cstr ...

  3. 题解 P3870 【[TJOI2009]开关】

    这个题我愣是交了好几遍没有过...... 后来@_皎月半洒花dalao告诉我说要^儿子节点的tag,然后就明白了...... 行吧,先上题面: 题目描述 现有N(2 ≤ N ≤ 100000)盏灯排成 ...

  4. 洛谷P3870 [TJOI2009]开关

    题目描述 现有\(N(2 ≤ N ≤ 100000)\)盏灯排成一排,从左到右依次编号为:\(1,2,......,N\).然后依次执行\(M(1 ≤ M ≤ 100000)\)项操作,操作分为两种: ...

  5. [TJOI2009]开关 (线段树)

    题目描述 现有N(2 ≤ N ≤ 100000)盏灯排成一排,从左到右依次编号为:1,2,......,N.然后依次执行M(1 ≤ M ≤ 100000)项操作,操作分为两种:第一种操作指定一个区间[ ...

  6. 洛谷 3870 [TJOI2009]开关

    [题解] 线段树基础题.对于每个修改操作把相应区间的sum改为区间长度-sum即可. #include<cstdio> #include<algorithm> #include ...

  7. 洛谷 P3870 [TJOI2009]开关

    题意简述 有n盏灯,默认为关,有两个操作: 1.改变l~r的灯的状态(把开着的灯关上,关着的灯打开) 2.查询l~r开着的灯的数量 题解思路 维护一个线段树,支持区间修改,区间查询 懒标记每次^1 代 ...

  8. 洛谷 P3870 [TJOI2009]开关 题解

    原题链接 前置知识: 线段树的单点.区间的修改与查询. 一看,我们需要维护两个操作: 区间取反: 区间求和. (因为区间 \(1\) 的个数,就是区间的和) 典型的 线段树 . 如果你只会线段树的 区 ...

  9. 洛谷P3870 [TJOI2009] 开关 (线段树)

    简单的省选题...... 打异或标记即可. 1 #include<bits/stdc++.h> 2 const int N=2e5+10; 3 using namespace std; 4 ...

随机推荐

  1. TyepScript学习

    前提 JS缺陷 (1)变量频繁变换类型,类型不明确难以维护 TS定义 (1)定义 以JavaScript为基础构建的语音,一个JavaScript的超集,扩展js添加了类型, 可以在任何支持js的平台 ...

  2. .NET性能优化-推荐使用Collections.Pooled(补充)

    简介 在上一篇.NET性能优化-推荐使用Collections.Pooled一文中,提到了使用Pooled类型的各种好处,但是在群里也有小伙伴讨论了很多,提出了很多使用上的疑问. 所以特此写了这篇文章 ...

  3. TL,你是如何管理项目风险的?

    沙包和打伞的故事 美国在1961年到1972年组织实施的一系列载人登月飞行任务.目的是实现载人登月飞行和人对月球的实地考察,为载人行星飞行和探测进行技术准备,它是世界航天史上具有划时代意义的一项成就. ...

  4. QQ空间未授权评论_已忽略

    看群友们聊天时发现的, 大概是做了查看了动态访问时间的一个设置, 但是仅自己可见的说说还是被评论了的这么一个问题. 闲的没事就翻了一下找一下问题. 这个方法嘎嘎鸡肋, 可以说完全没用, 交到tsrc, ...

  5. .NET中如何在同步代码块中调用异步方法

    更新记录 本文迁移自Panda666原博客,原发布时间:2021年7月2日. 在同步代码块中调用异步方法,方法有很多. 一.对于有返回值的Task 在同步代码块中直接访问 Task 的 Result ...

  6. 重学ES系列之新型数据结构Map应用

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  7. 十分钟快速实战Three.js

    前言 本文不会对Three.js几何体.材质.相机.模型.光源等概念详细讲解,会首先分成几个模块给大家快速演示一盒小案例.大家可以根据这几个模块快速了解Three.js的无限魅力.学习 我们会使用Th ...

  8. Python在函数中使用列表作为默认参数

    在学习中遇到的Python的一个坑,那就是使用列表作为默认参数. 我们知道,在Python中,列表(list)是可变对象,所以列表的内容可能会在函数内改变.另一个需要注意的是,使用列表作为函数的默认参 ...

  9. IDEA中Maven Project所在位置

    难免有小伙伴找不着这个在哪. 一.首先就是可以在下面这个位置查询到: 二.如果找不着,那么在这里找: 三.如果还找不到,那就没有是你刚导入的项目没有Add Maven, 下面这个图是我Add  Mav ...

  10. .Net下极限生产力之efcore分表分库全自动化迁移CodeFirst

    .Net下极限生产力之分表分库全自动化Migrations Code-First ## 介绍 本文ShardinfCore版本x.6.x.x+ 本期主角: - [`ShardingCore`](htt ...