Docker详解(上)
Docker 学习
- Docker概述
- Docker安装
- Docker命令
- 镜像命令
- 容器命令
- 操作命令
- ...
- Docker镜像
- 容器数据卷
- DockerFile
- Docker网络原理
- IDEA整合Docker
- Docker Compose
- Docker Swarm
- CI/CD Jenkins
Docker概述
Docker为什么出现?
一款产品:开发 --> 上线 两套环境!应用环境,应用配置!
开发 --> 运维 问题:我在我的电脑上可以运行!版本更新,导致服务不可用!对于运维来说,考验就十分大!
环境配置是十分的麻烦,每一个机器都要部署环境(集群Redis、ES、Hadoop......)!费时费力。
发布一个项目(jar + (Redis MySQL jdk ES)),项目能不能都带上环境安装打包!
之前在服务器配置一个应用环境 Redis MySQL jdk ES Hadoop,配置十分麻烦,不能够跨平台。
Windows,最后发布到Linux!
传统:开发 jar,运维来做!
现在:开发打包部署上线,一套流程做完!
Java --> apk --> 发布(应用商店) --> 张三使用apk --> 安装即可用!
Java --> jar(环境) --> 打包项目带上环境(镜像) --> (Docker仓库:商店) --> 下载我们发布的镜像 --> 直接运行即可!
Docker给以上的问题,提出了解决方案!
Docker的思想就来自于集装箱!
JRE --> 多个应用(端口冲突) --> 原来都是交叉的!
隔离:Docker核心思想:打包装箱!每个箱子是互相隔离的。
水果 生化武器
Docker 通过隔离机制,可以将服务器利用到极致!
本质:所有的技术都是因为出现了一些问题,我们需要去解决,才去学习!
Docker的历史
2010年,几个搞IT的年轻人,就在美国成立了一家dotCloud
做一些pass
的云计算服务!LXC 有关的容器技术!
他们将自己的技术(容器化技术)命名 就是 Docker!
Docker 刚刚诞生的时候,没有引起行业的注意!dotCloud,就活不下去!
开源
开放源代码!
2013年,Docker开源!
Docker越来越多的人发现了Docker的优点!火了,Docker 每个月都会更新一个版本!
2014年4月9日,Docker1.0发布!
Docker为什么这么火?十分的轻巧!
在容器技术出来之前,我们都是使用虚拟机技术!
虚拟机:在Windows中装一个VMware,通过这个软件我们可以虚拟出来一台或者多台电脑!十分笨重!
虚拟机也是属于虚拟化技术,Docker 容器技术,也是一种 虚拟化技术!
vm : linux centos原生镜像(一个电脑!) 隔离,需要开启多个虚拟机! 几个G 几分钟
docker : 隔离,镜像(最核心的环境 4m + jdk + mysql)十分的小巧,运行镜像就可以了!小巧! 几个M KB 秒级启动!
到现在,所有开发人员都必须要会Docker!
聊聊Docker
Docker基于Go语言开发的!开源项目!
文档地址:https://docs.docker.com/ Docker的文档是超级详细的!
Docker能干嘛
之前的虚拟机技术!
虚拟机技术缺点:
资源占用十分多
冗余步骤多
启动很慢!
容器化技术
容器化技术不是模拟的一个完整的操作系统
比较Docker 和 虚拟机技术的不同:
- 传统虚拟机,虚拟出一套硬件,运行一个完整的操作系统,然后在这个系统上安装和运行软件
- 容器内的应用直接运行在宿主机的内核,容器是没有自己的内核的,也没有虚拟我们的硬件,所以就轻便了
- 每个容器间是互相隔离的,每个容器内都有一个属于自己的文件系统,互不影响。
DevOps(开发、运维)
应用更快速的交付和部署
传统:一堆帮助文档,安装程序
Docker:打包镜像,发布测试,一键运行
更便捷的升级和扩缩容
使用了Docker之后,我们部署应用就和搭积木一样!
项目打包为一个镜像,扩展 服务器A!服务器B
更简单的系统运维
在容器化之后,我们的开发、测试环境都是高度一致的。
更高效的计算资源利用
Docker 是内核级别的虚拟化,可以在物理机上可以运行很多的容器实例!服务器的性能可以被压榨到极致。
Docker 安装
Docker的基本组成
镜像(image):
docker镜像就像一个模板,可以通过这个模板来创建服务,tomcat镜像 ==> run ==> tomcat01容器(提供服务),通过这个镜像可以创建多个容器(最终服务运行或者项目运行就是在容器中的)。
容器(container):
Docker利用容器技术,独立运行一个或者一组应用,通过镜像来创建。
启动,停止,删除,基本命令!
目前可以把这个容器理解为就是一个简易的linux系统
仓库(repository):
仓库就是存放镜像的地方!
仓库分为公有仓库和私有仓库!
Docker Hub(默认是国外的)
阿里云...都有容器服务器(配置镜像加速!)
安装Docker
环境准备
- 需要会一点点的Linux基础
- CentOS 7
- 我们使用Xshell连接远程服务器进行操作!
环境查看
# 系统内核是 3.10 以上的
# 系统版本
安装
帮助文档:
# 1、卸载旧的版本
sudo apt-get remove docker docker-engine docker.io containerd runc
# 2、需要的安装包
yum install -y yum-utils
# 3、设置镜像的仓库
yum-config-manager --add-repo http://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo # 阿里云
# 更新yum软件包索引
yum makecache fast
# 4、安装docker docker-ce 社区版 ee 企业版
yum install docker-ce docker-ce-cli containerd.io
# 5、启动docker
systemctl start docker
# 6、使用docker version 查看是否安装成功
# 7、hello-world
docker run hello-world
# 8、查看一下下载的这个 hello-world 镜像
[root@ls-Cwj2oH9C /]# docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
hello-world latest feb5d9fea6a5 9 months ago 13.3kB
了解:卸载docker
# 1、卸载依赖
yum remove docker-ce docker-ce-cli containerd.io
# 2、删除资源
rm -rf /var/lib/docker
# /var/lib/docker docker的默认工作路径!
阿里云镜像加速
登录阿里云找到容器服务
找到镜像加速的地址
配置使用
sudo mkdir -p /etc/docker sudo tee /etc/docker/daemon.json <<-'EOF'
{
"registry-mirrors": ["https://veotnqhz.mirror.aliyuncs.com"]
}
EOF sudo systemctl daemon-reload sudo systemctl restart docker
回顾HelloWorld流程
底层原理
Docker是怎么工作的?
Docker是一个Client - Server 结构的系统,Docker的守护进程运行在主机上。通过Socket从客户端访问!
DockerServer接收到 Docker - Client 的指令,就会执行这个命令!
Docker 为什么比 VM 快?
Docker有着比虚拟机更少的抽象层
Docker利用的是宿主机的内核,vm需要的是Guest OS。
所以说,新建一个容器的时候,docker不需要像虚拟机一样重新加载一个操作系统内核,避免引导操作。虚拟机是加载Guest OS,分钟级别的,而docker是利用宿主机的操作系统,省略了这个复杂的过程,秒级!
之后学习完毕所有的命令,再回过头来看这段理论,就会很清晰!
Docker的常用命令
帮助命令
docker version # 显示docker的版本信息
docker info # 显示docker的系统信息,包括镜像和容器的数量
docker 命令 --help # 帮助命令
帮助文档的地址:https://docs.docker.com/engine/reference/commandline/docker/
镜像命令
docker images 查看所有本地的主机上的镜像
[root@ls-Cwj2oH9C /]# docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
hello-world latest feb5d9fea6a5 9 months ago 13.3kB
# 解释
REPOSITORY 镜像的仓库源
TAG 镜像的标签
IMAGE ID 镜像的id
CREATED 镜像的创建时间
SIZE 镜像的大小
# 可选项
-a,--all # 列出所有镜像
-q,--quiet # 只显示镜像的id
docker search 搜索镜像
[root@ls-Cwj2oH9C /]# docker search mysql
NAME DESCRIPTION STARS OFFICIAL AUTOMATED
mysql MySQL is a widely used, open-source relation… 12821 [OK]
mariadb MariaDB Server is a high performing open sou… 4918 [OK]
percona Percona Server is a fork of the MySQL relati… 580 [OK]
phpmyadmin phpMyAdmin - A web interface for MySQL and M… 564 [OK]
# 可选项,通过搜索来过滤
--filter=STARS=3000 # 搜索出来的镜像就是STARS大于3000的
[root@ls-Cwj2oH9C ~]# docker search mysql --filter=STARS=3000
NAME DESCRIPTION STARS OFFICIAL AUTOMATED
mysql MySQL is a widely used, open-source relation… 12821 [OK]
mariadb MariaDB Server is a high performing open sou… 4918 [OK]
[root@ls-Cwj2oH9C ~]# docker search mysql --filter=STARS=5000
NAME DESCRIPTION STARS OFFICIAL AUTOMATED
mysql MySQL is a widely used, open-source relation… 12821 [OK]
docker pull 下载镜像
# 下载镜像 docker pull 镜像名[:tag]
[root@ls-Cwj2oH9C /]# docker pull mysql
Using default tag: latest # 如果不写 tag,默认就是latest
latest: Pulling from library/mysql
72a69066d2fe: Pull complete # 分层下载,docker image的核心 联合文件系统
93619dbc5b36: Pull complete
99da31dd6142: Pull complete
626033c43d70: Pull complete
37d5d7efb64e: Pull complete
ac563158d721: Pull complete
d2ba16033dad: Pull complete
688ba7d5c01a: Pull complete
00e060b6d11d: Pull complete
1c04857f594f: Pull complete
4d7cfa90e6ea: Pull complete
e0431212d27d: Pull complete
Digest: sha256:e9027fe4d91c0153429607251656806cc784e914937271037f7738bd5b8e7709 # 签名
Status: Downloaded newer image for mysql:latest
docker.io/library/mysql:latest # 真实地址
# 等价于它
docker pull mysql
docker pull docker.io/library/mysql:latest
# 指定版本下载
[root@ls-Cwj2oH9C /]# docker pull mysql:5.7
5.7: Pulling from library/mysql
72a69066d2fe: Already exists
93619dbc5b36: Already exists
99da31dd6142: Already exists
626033c43d70: Already exists
37d5d7efb64e: Already exists
ac563158d721: Already exists
d2ba16033dad: Already exists
0ceb82207cd7: Pull complete
37f2405cae96: Pull complete
e2482e017e53: Pull complete
70deed891d42: Pull complete
Digest: sha256:f2ad209efe9c67104167fc609cca6973c8422939491c9345270175a300419f94
Status: Downloaded newer image for mysql:5.7
docker.io/library/mysql:5.7
docker rmi 删除镜像!
[root@ls-Cwj2oH9C /]# docker rmi -f 镜像id # 删除指定的镜像
[root@ls-Cwj2oH9C /]# docker rmi -f 镜像id 镜像id 镜像id 镜像id # 删除多个镜像
[root@ls-Cwj2oH9C /]# docker rmi -f $(docker images -aq) # 删除全部的镜像
容器命令
说明:我们有了镜像才可以创建容器,linux,下载一个 centos 镜像来测试学习
docker pull centos
新建容器并启动
docker run [可选参数] image
# 参数说明
--name="Name" 容器名字 tomcat01 tomcat02,用来区分容器
-d 后台方式运行
-it 使用交互方式运行,进入容器查看内容
-p 指定容器的端口 -p 8080:8080
-p ip:主机端口:容器端口
-p 主机端口:容器端口 (常用)
-p 容器端口
容器端口
-p 随机指定端口
# 测试,启动并进入容器
[root@ls-Cwj2oH9C ~]# docker run -it centos /bin/bash
[root@26c5b40b2e60 /]# ls # 查看容器内的centos,基础版本,很多命令都是不完善的!
bin etc lib lost+found mnt proc run srv tmp var
dev home lib64 media opt root sbin sys usr
# 从容器中退回主机
[root@c103dbc1d4d4 /]# exit
exit
[root@ls-Cwj2oH9C ~]# cd /
[root@ls-Cwj2oH9C /]# ls
bin dev home lib64 media opt root sbin sys usr
boot etc lib lost+found mnt proc run srv tmp var
列出所有的运行的容器
# docker ps 命令
# 列出当前正在运行的容器
-a # 列出当前正在运行的容器+带出历史运行过的容器
-n=? # 显示最近创建的容器
[root@ls-Cwj2oH9C /]# docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
[root@ls-Cwj2oH9C /]# docker ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
c103dbc1d4d4 centos "/bin/bash" 57 seconds ago Exited (0) 50 seconds ago busy_ramanujan
26c5b40b2e60 centos "/bin/bash" 11 minutes ago Exited (0) About a minute ago thirsty_brahmagupta
1aba774b8be5 feb5d9fea6a5 "/hello" 4 hours ago Exited (0) 4 hours ago quizzical_turing
[root@ls-Cwj2oH9C /]# docker ps -aq
c103dbc1d4d4
26c5b40b2e60
1aba774b8be5
退出容器
exit # 直接容器停止并退出
Ctrl + P + Q # 容器不停止退出
删除容器
docker rm 容器id # 删除指定的容器,不能删除正在运行的容器,如果要强制删除 rm -f
docker rm -f $(docker ps -aq) # 删除所有的容器
docker ps -a -q|xargs docker rm # 删除所有的容器
启动和停止容器的操作
docker start 容器id # 启动容器
docker restart 容器id # 重启容器
docker stop 容器id # 停止当前正在运行的容器
docker kill 容器id # 强制停止当前容器
常用其他命令
后台启动容器
# 命令 docker run -d 镜像名!
[root@ls-Cwj2oH9C /]# docker run -d centos
d3ebfe17b9c02d91f4f45bc9405b6713b7098e9c2f1229cd6523b46f85531c03
# 问题docker ps,发现 centos 停止了
# 常见的坑:docker 容器使用后台运行,就必须要有一个前台进程,docker发现没有应用,就会自动停止
# nginx,容器启动后,发现自己没有提供服务,就会立刻停止,就是没有程序了
查看日志
docker logs -f -t --tail 10 容器 没有日志
# 自己编写一段shell脚本
[root@ls-Cwj2oH9C /]# docker run -d centos /bin/sh -c "while true;do echo kuangshen;sleep 1;done"
be09e0fd41c70e5d114b5c2534acba6ae97a3a12e1b4d0d603077b83c76697de
# [root@ls-Cwj2oH9C /]# docker ps
CONTAINER ID IMAGE
be09e0fd41c7 centos
d2ae011f21b8 centos
# 显示日志
-tf # 显示日志
--tail number # 要显示的日志条数
[root@ls-Cwj2oH9C /]# docker logs -tf --tail 10 be09e0fd41c7
查看容器中进程信息 ps
# 命令 docker top 容器id
[root@ls-Cwj2oH9C /]# docker top be09e0fd41c7
UID PID PPID C STIME
root 23558 23538 0 15:53
root 25465 23558 0 16:09
查看镜像的元数据
# 命令
docker inspect 容器id
# 测试
[root@ls-Cwj2oH9C /]# docker inspect be09e0fd41c7
[
{
"Id": "be09e0fd41c70e5d114b5c2534acba6ae97a3a12e1b4d0d603077b83c76697de",
"Created": "2022-07-05T07:53:54.627754682Z",
"Path": "/bin/sh",
"Args": [
"-c",
"while true;do echo kuangshen;sleep 1;done"
],
"State": {
"Status": "running",
"Running": true,
"Paused": false,
"Restarting": false,
"OOMKilled": false,
"Dead": false,
"Pid": 23558,
"ExitCode": 0,
"Error": "",
"StartedAt": "2022-07-05T07:53:54.913270812Z",
"FinishedAt": "0001-01-01T00:00:00Z"
},
"Image": "sha256:5d0da3dc976460b72c77d94c8a1ad043720b0416bfc16c52c45d4847e53fadb6",
"ResolvConfPath": "/var/lib/docker/containers/be09e0fd41c70e5d114b5c2534acba6ae97a3a12e1b4d0d603077b83c76697de/resolv.conf",
"HostnamePath": "/var/lib/docker/containers/be09e0fd41c70e5d114b5c2534acba6ae97a3a12e1b4d0d603077b83c76697de/hostname",
"HostsPath": "/var/lib/docker/containers/be09e0fd41c70e5d114b5c2534acba6ae97a3a12e1b4d0d603077b83c76697de/hosts",
"LogPath": "/var/lib/docker/containers/be09e0fd41c70e5d114b5c2534acba6ae97a3a12e1b4d0d603077b83c76697de/be09e0fd41c70e5d114b5c2534acba6ae97a3a12e1b4d0d603077b83c76697de-json.log",
"Name": "/vigilant_tu",
"RestartCount": 0,
"Driver": "overlay2",
"Platform": "linux",
"MountLabel": "",
"ProcessLabel": "",
"AppArmorProfile": "",
"ExecIDs": null,
"HostConfig": {
"Binds": null,
"ContainerIDFile": "",
"LogConfig": {
"Type": "json-file",
"Config": {}
},
"NetworkMode": "default",
"PortBindings": {},
"RestartPolicy": {
"Name": "no",
"MaximumRetryCount": 0
},
"AutoRemove": false,
"VolumeDriver": "",
"VolumesFrom": null,
"CapAdd": null,
"CapDrop": null,
"CgroupnsMode": "host",
"Dns": [],
"DnsOptions": [],
"DnsSearch": [],
"ExtraHosts": null,
"GroupAdd": null,
"IpcMode": "private",
"Cgroup": "",
"Links": null,
"OomScoreAdj": 0,
"PidMode": "",
"Privileged": false,
"PublishAllPorts": false,
"ReadonlyRootfs": false,
"SecurityOpt": null,
"UTSMode": "",
"UsernsMode": "",
"ShmSize": 67108864,
"Runtime": "runc",
"ConsoleSize": [
0,
0
],
"Isolation": "",
"CpuShares": 0,
"Memory": 0,
"NanoCpus": 0,
"CgroupParent": "",
"BlkioWeight": 0,
"BlkioWeightDevice": [],
"BlkioDeviceReadBps": null,
"BlkioDeviceWriteBps": null,
"BlkioDeviceReadIOps": null,
"BlkioDeviceWriteIOps": null,
"CpuPeriod": 0,
"CpuQuota": 0,
"CpuRealtimePeriod": 0,
"CpuRealtimeRuntime": 0,
"CpusetCpus": "",
"CpusetMems": "",
"Devices": [],
"DeviceCgroupRules": null,
"DeviceRequests": null,
"KernelMemory": 0,
"KernelMemoryTCP": 0,
"MemoryReservation": 0,
"MemorySwap": 0,
"MemorySwappiness": null,
"OomKillDisable": false,
"PidsLimit": null,
"Ulimits": null,
"CpuCount": 0,
"CpuPercent": 0,
"IOMaximumIOps": 0,
"IOMaximumBandwidth": 0,
"MaskedPaths": [
"/proc/asound",
"/proc/acpi",
"/proc/kcore",
"/proc/keys",
"/proc/latency_stats",
"/proc/timer_list",
"/proc/timer_stats",
"/proc/sched_debug",
"/proc/scsi",
"/sys/firmware"
],
"ReadonlyPaths": [
"/proc/bus",
"/proc/fs",
"/proc/irq",
"/proc/sys",
"/proc/sysrq-trigger"
]
},
"GraphDriver": {
"Data": {
"LowerDir": "/var/lib/docker/overlay2/1a375808cf6a2eff0ce527432ddf9fd9b2c5519b1a71b9c6a5931104f24e55ed-init/diff:/var/lib/docker/overlay2/652792c86aac30ea5e1860169ae46b72da12c74efde67ea5aaba90a396e5989f/diff",
"MergedDir": "/var/lib/docker/overlay2/1a375808cf6a2eff0ce527432ddf9fd9b2c5519b1a71b9c6a5931104f24e55ed/merged",
"UpperDir": "/var/lib/docker/overlay2/1a375808cf6a2eff0ce527432ddf9fd9b2c5519b1a71b9c6a5931104f24e55ed/diff",
"WorkDir": "/var/lib/docker/overlay2/1a375808cf6a2eff0ce527432ddf9fd9b2c5519b1a71b9c6a5931104f24e55ed/work"
},
"Name": "overlay2"
},
"Mounts": [],
"Config": {
"Hostname": "be09e0fd41c7",
"Domainname": "",
"User": "",
"AttachStdin": false,
"AttachStdout": false,
"AttachStderr": false,
"Tty": false,
"OpenStdin": false,
"StdinOnce": false,
"Env": [
"PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin"
],
"Cmd": [
"/bin/sh",
"-c",
"while true;do echo kuangshen;sleep 1;done"
],
"Image": "centos",
"Volumes": null,
"WorkingDir": "",
"Entrypoint": null,
"OnBuild": null,
"Labels": {
"org.label-schema.build-date": "20210915",
"org.label-schema.license": "GPLv2",
"org.label-schema.name": "CentOS Base Image",
"org.label-schema.schema-version": "1.0",
"org.label-schema.vendor": "CentOS"
}
},
"NetworkSettings": {
"Bridge": "",
"SandboxID": "4b2ab1f2e949baa34edcfd36e72e6ed4a80c5f5381f6183b30ee6d9e73e39e44",
"HairpinMode": false,
"LinkLocalIPv6Address": "",
"LinkLocalIPv6PrefixLen": 0,
"Ports": {},
"SandboxKey": "/var/run/docker/netns/4b2ab1f2e949",
"SecondaryIPAddresses": null,
"SecondaryIPv6Addresses": null,
"EndpointID": "83295610dca0bd58cf285f6e7238eaae06749bf30433a75ee9d126dd6f92c25f",
"Gateway": "172.17.0.1",
"GlobalIPv6Address": "",
"GlobalIPv6PrefixLen": 0,
"IPAddress": "172.17.0.3",
"IPPrefixLen": 16,
"IPv6Gateway": "",
"MacAddress": "02:42:ac:11:00:03",
"Networks": {
"bridge": {
"IPAMConfig": null,
"Links": null,
"Aliases": null,
"NetworkID": "4181a198dd37ad281366217d8321f1ca65fd69f9139e73c0a7fc460afc58fa28",
"EndpointID": "83295610dca0bd58cf285f6e7238eaae06749bf30433a75ee9d126dd6f92c25f",
"Gateway": "172.17.0.1",
"IPAddress": "172.17.0.3",
"IPPrefixLen": 16,
"IPv6Gateway": "",
"GlobalIPv6Address": "",
"GlobalIPv6PrefixLen": 0,
"MacAddress": "02:42:ac:11:00:03",
"DriverOpts": null
}
}
}
}
]
进入当前正在运行的容器
# 我们通常容器都是使用后台方式运行的,需要进入容器,修改一些配置
# 命令
docker exec -it 容器id bashShell
# 测试
[root@ls-Cwj2oH9C /]# docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
be09e0fd41c7 centos "/bin/sh -c 'while t…" 32 minutes ago Up 32 minutes vigilant_tu
d2ae011f21b8 centos "/bin/bash" 45 minutes ago Up 45 minutes mystifying_tereshkova
[root@ls-Cwj2oH9C /]# docker exec -it be09e0fd41c7 /bin/bash
[root@be09e0fd41c7 /]# ls
bin etc lib lost+found mnt proc run srv tmp var
dev home lib64 media opt root sbin sys usr
[root@be09e0fd41c7 /]# ps -ef
UID PID PPID C STIME TTY TIME CMD
root 1 0 0 07:53 ? 00:00:01 /bin/sh -c while true;do echo kuangshen;sleep 1;don
root 4191 0 0 09:03 pts/0 00:00:00 /bin/bash
root 4214 1 0 09:03 ? 00:00:00 /usr/bin/coreutils --coreutils-prog-shebang=sleep /
root 4215 4191 0 09:03 pts/0 00:00:00 ps -ef
# 方式二
docker attach 容器id
# 测试
[root@ls-Cwj2oH9C /]# docker attach be09e0fd41c7
正在执行当前的代码...
# docker exec # 进入容器后开启一个新的终端,可以在里面操作(常用)
# docker attach # 进入容器正在执行的终端,不会启动新的进程!
从容器内拷贝文件到主机上
docker cp 容器id:容器内路径 目的主机路径
# 查看当前主机目录下
[root@ls-Cwj2oH9C home]# ls
kuangshen.java
[root@ls-Cwj2oH9C home]# docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
17c1f83eeda6 centos "/bin/bash" 32 seconds ago Up 31 seconds relaxed_spence
be09e0fd41c7 centos "/bin/sh -c 'while t…" 2 hours ago Up 2 hours vigilant_tu
d2ae011f21b8 centos "/bin/bash" 2 hours ago Up 2 hours mystifying_tereshkova
# 进入docker容器内部
[root@ls-Cwj2oH9C home]# docker attach 17c1f83eeda6
[root@17c1f83eeda6 /]# cd /home
[root@17c1f83eeda6 home]# ls
# 在容器内新建一个文件
[root@17c1f83eeda6 home]# touch test.java
[root@17c1f83eeda6 home]# exit
exit
[root@ls-Cwj2oH9C home]# docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
be09e0fd41c7 centos "/bin/sh -c 'while t…" 2 hours ago Up 2 hours vigilant_tu
d2ae011f21b8 centos "/bin/bash" 2 hours ago Up 2 hours mystifying_tereshkova
[root@ls-Cwj2oH9C home]# docker ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
17c1f83eeda6 centos "/bin/bash" 2 minutes ago Exited (0) 7 seconds ago relaxed_spence
be09e0fd41c7 centos "/bin/sh -c 'while t…" 2 hours ago Up 2 hours vigilant_tu
d2ae011f21b8 centos "/bin/bash" 2 hours ago Up 2 hours mystifying_tereshkova
d3ebfe17b9c0 centos "/bin/bash" 3 hours ago Exited (0) 3 hours ago gifted_joliot
# 将这个文件拷贝出来到主机上
[root@ls-Cwj2oH9C home]# docker cp 17c1f83eeda6:/home/test.java /home
[root@ls-Cwj2oH9C home]# ls
kuangshen.java test.java
[root@ls-Cwj2oH9C home]#
# 拷贝是一个手动过程,未来我们使用 -v 卷的技术,可以实现,自动同步
小结
attach : ##进入指定运行对象
[root@VM-0-9-centos ~]# docker attach 96763bc9ea4e
build : ##通过Dockerfile定制镜像
commit : ##提交当前容器为新的镜像
cp : ##拷贝指定文件或目录到主机
[root@VM-0-9-centos ~]# docker cp 96763bc9ea4e:/home/test.java /home/test_docker_cp/
create : ##创建新的容器,类似于run,但是不启动容器
[root@VM-0-9-centos ~]# docker create centos /bin/bash
diff: ##查看docker容器变化
events: ##从docker获取实时容器事件
exec: ##进入已经启动的容器运行指令
[root@VM-0-9-centos ~]# docker exec -it f170a9b28775 /bin/bash
export: ##到处容器的内容归为一个tar文档
history: ##展示一个镜像形成历史
images: ##列出系统当前镜像
[root@VM-0-9-centos ~]# docker images -a
import: ## 从tar包中内容中创建一个新的文件系统
info: ## 查看系统详细信息
[root@VM-0-9-centos ~]# docker info
inspect: ## 查看容器详细信息
[root@VM-0-9-centos ~]# docker inspect f170a9b28775
kill: ## 强制结束指定容器
load: ## 从一个tar包中加载一个镜像
login: ## 注册或者登录一个docker源服务器
logout: ## 登出
logs: ## 输出当前容器日志信息
docker logs -tf 容器id
docker logs --tail number 容器id #num为要显示的日志条数
port: ## 查看映射端口对应容器内部的源端口
pasue: ## 暂停容器
ps: ## 列出容器列表
docker ps #运行中列表
docker ps -a #所有容器列表
pull: ## 从docker源镜像拉取指定镜像
docker pull mysql #默认拉取最新版本mysql
push: ## 推送指定镜像或库镜像至docker源服务器
restart: ## 重启正在运行的容器
rm: ## 移除一个或者多个容器
docker rm -f $(docker ps -aq) #移除所有容器
rmi: ## 移除一个或者多个镜像
run: ## 创建一个容器并运行内容
docker run -it centos /bin/bash
save: ## 保存一个镜像为一个tar包
search: ## 在docker hub中搜索镜像
docker search mysql #搜索所有mysql镜像
docker search mysql --filter=STARS=3000 #搜索收藏数大于3000的镜像
start: ## 启动容器
docker start [id]
stop: ## 停止容器
docker stop [id]
tag: ## 给源服务器中镜像设置标签
top: ## 查看容器中运行的进程信息
unpause: ## 取消暂停容器
version: ## 查看docker版本号
docker version
wait: ## 截取容器停止时的退出状态值
docker的命令十分多,上面我们学习的那些都是最常用的容器和镜像的命令,之后我们还会学习很多命令!
作业练习
Docker 安装 Nginx
# 1、搜索镜像 search 建议大家去docker hub搜索,可以看到帮助文档
# 2、下载镜像 pull
# 3、运行测试
[root@ls-Cwj2oH9C home]# docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
nginx latest 605c77e624dd 6 months ago 141MB
centos latest 5d0da3dc9764 9 months ago 231MB
# -d 后台运行
# --name 给容器命名
# -p 宿主机端口:容器内部端口
[root@ls-Cwj2oH9C home]# docker run -d --name nginx01 -p 3344:80 nginx
fb127ee2c6ba61f9e42c8664673494314122e48017df0875342fbeed80b81e60
[root@ls-Cwj2oH9C home]# docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
fb127ee2c6ba nginx "/docker-entrypoint.…" 4 seconds ago Up 4 seconds 0.0.0.0:3344->80/tcp, :::3344->80/tcp nginx01
be09e0fd41c7 centos "/bin/sh -c 'while t…" 3 hours ago Up 3 hours vigilant_tu
d2ae011f21b8 centos "/bin/bash" 3 hours ago Up 3 hours mystifying_tereshkova
[root@ls-Cwj2oH9C home]# curl localhost:3344
# 进入容器
[root@ls-Cwj2oH9C home]# docker exec -it nginx01 /bin/bash
root@fb127ee2c6ba:/# whereis nginx
nginx: /usr/sbin/nginx /usr/lib/nginx /etc/nginx /usr/share/nginx
root@fb127ee2c6ba:/# cd /etc/nginx
root@fb127ee2c6ba:/etc/nginx# ls
conf.d fastcgi_params mime.types modules nginx.conf scgi_params uwsgi_params
root@fb127ee2c6ba:/etc/nginx#
端口暴露的概念
思考问题:我们每次改动nginx配置文件,都需要进入容器内部,十分的麻烦,我们要是可以在容器外部提供一个映射路径,达到在容器修改文件名,容器内部就可以自动修改 -v 数据卷!
作业:docker来装一个tomcat
# 官方的使用
docker run -it --rm tomcat:9.0
# 我们之前的启动都是后台,停止了容器之后,容器还是可以查到 docker run -it --rm,一般用来测试,用完就删除
# 下载再启动
docker pull tomcat
# 启动运行
docker run -d -p 3355:8080 --name tomcat01 tomcat
# 测试访问没有问题
# 进入容器
[root@ls-Cwj2oH9C /]# docker exec -it tomcat01 /bin/bash
# 发现问题:1、linux命令少了 2、没有webapps 默认是最小的镜像,所有不必要的都剔除掉。
# 保证最小可运行的环境
思考问题:我们以后要部署项目,如果每次都要进入容器是不是十分麻烦?我们要是可以在容器外部提供一个映射路径,webapps,我们在外部放置项目,就自动同步到内部就好了!
作业:部署 es + kibana
# es 暴露的端口很多!
# es 十分的耗内存
# es 的数据一般需要放置到安全目录!挂载
# --net somenetwork ? 网络配置
# 启动 elasticsearch
docker run -d --name elasticsearch -p 9200:9200 -p 9300:9300 -e "discovery.type=single-node" elasticsearch:latest
# 启动了 linux就卡住了 docker stats 查看cpu的状态
# es 是十分耗内存的 2.182GiB 1核2G根本跑不动,会卡死,2核4G起步可以运行!
# 查看 docker stats
# 测试一下es是否成功了
[root@ls-Cwj2oH9C /]# curl localhost:9200
{
"name" : "7QxbBIY",
"cluster_name" : "elasticsearch",
"cluster_uuid" : "wUTOoYcpSZaSKV4VALlxeQ",
"version" : {
"number" : "5.6.8",
"build_hash" : "688ecce",
"build_date" : "2018-02-16T16:46:30.010Z",
"build_snapshot" : false,
"lucene_version" : "6.6.1"
},
"tagline" : "You Know, for Search"
}
# 赶紧关闭,增加内存的限制!
# 关闭es,增加内存的限制,修改配置文件 -e 环境配置修改
docker run -d --name elasticsearch02 -p 9200:9200 -p 9300:9300 -e ES_JAVA_OPTS="-Xms64m -Xmx512m" elasticsearch:latest
# 查看 docker stats
[root@ls-Cwj2oH9C /]# curl localhost:9200
{
"name" : "FnQQV4P",
"cluster_name" : "elasticsearch",
"cluster_uuid" : "-M8PzTiLTVCNeZ2AZND1Ig",
"version" : {
"number" : "5.6.8",
"build_hash" : "688ecce",
"build_date" : "2018-02-16T16:46:30.010Z",
"build_snapshot" : false,
"lucene_version" : "6.6.1"
},
"tagline" : "You Know, for Search"
}
作业:使用kibana连接elasticsearch?思考网络如何才能连接过去!
可视化
portainer(先用这个)
Rancher(CI/CD(Continuous Intergration/Continuous Delpoy)持续集成/持续部署再用)
什么是portainer?
Docker图形化界面管理工具!提供一个后台面板供我们操作!
docker run -d -p 8088:9000 \
--restart=always -v /var/run/docker.sock:/var/run/docker.sock --privileged=true portainer/portainer
访问测试:http://182.61.20.38:8088/
通过它来访问了:
管理员登录后选择Local Docker后的主界面,注意:管理员只有一个
点击local docker进入后的面板,可以查看容器、镜像、卷、网络等的详细信息
可视化面板平时不会使用,测试使用即可!
Docker镜像详解
镜像是什么
镜像是一种轻量级、可执行的独立软件包,用来打包软件运行环境和基于运行环境开发的软件,它包含运行某个软件所需的所有内容,包括代码、运行时库、环境变量和配置文件。
所有的应用,直接打包docker镜像,就可以直接跑起来!
如何得到镜像:
- 从远程仓库下载
- 朋友拷贝给你
- 自己制作一个镜像 DockerFile
Docker镜像加载原理
UnionFS(联合文件系统)
我们下载的时候看到的一层层就是这个!
UnionFS(联合文件系统):Union文件系统(UnionFS)是一种分层、轻量级并且高性能的文件系统,它支持对文件系统的修改作为一次提交来一层层的叠加,同时可以将不同目录挂载到同一个虚拟文件系统下(unite several directories into a single virtual filesystem)。Union文件系统时Docker镜像的基础。镜像可以通过分层来进行继承,基于基础镜像(没有父镜像),可以制作各种具体的应用镜像。
特性:一次同时加载多个文件系统,但从外面看起来,只能看到一个文件系统 ,联合加载会把各层文件系统叠加起来,这样最终的文件系统会包含所有底层的文件和目录。
Docker镜像加载原理
docker的镜像实际上由一层一层的文件系统组成,这种层级的文件系统UnionFS。
bootfs(boot file system)主要包含bootloader和kernel,bootloader主要是引导加载kernel,Linux刚启动时会加载bootfs文件系统,在Docker镜像的最底层是bootfs。这一层与我们典型的Linux/Unix系统是一样的,包含boot加载器和内核。当boot加载完成之后整个内核就都在内存中了,此时内存的使用权已由bootfs转交给内核,此时系统也会卸载bootfs。
rootfs(root file system),在bootfs之上。包含的就是典型Linux系统中的/dev,/proc,/bin,/etc 等标准目录和文件。rootfs就是各种不同的操作系统发行版,比如Ubuntu,Centos等等。
平时我们安装进虚拟机的CentOS都是好几个G,为什么Docker这里才200M?
对于一个精简的OS,rootfs可以很小,只需要包含最基本的命令,工具和程序库就可以了,因为底层直接用Host的kernel,自己只需要提供rootfs就可以了,由此可见对于不同的linux发行版,rootfs会有差别,因此不同的发行版可以公用bootfs。
虚拟机是分钟级别,容器是秒级!
分层理解
分层的镜像
我们可以去下载一个镜像,注意观察下载的日志输出,可以看到是一层一层的在下载!
思考:为什么Docker镜像要采用这种分层的结构呢?
最大的好处,莫过于是资源共享了!比如有多个镜像都从相同的Base镜像构建而来,那么宿主机只需在磁盘上保留一份base镜像,同时内存中也只需要加载一份base镜像,这样就可以为所有的容器服务了,而且镜像的每一层都可以被分享。
查看镜像分层的方式可以通过 docker image inspect 命令!
[root@ls-Cwj2oH9C ~]# docker image inspect redis:latest
[
// ......
"RootFS": {
"Type": "layers",
"Layers": [
"sha256:08249ce7456a1c0613eafe868aed936a284ed9f1d6144f7d2d08c514974a2af9",
"sha256:5659b3a1146e8bdda814e4ad825e107088057e8578c83b758ad6aab93700d067",
"sha256:cf3ae502d7faa4e90c159cc42b63b46a6be04864fe9d04fb0939e2b0c8b1f7c7",
"sha256:4ca33072d02630d1d55ada52c3bde95a1ffe02ae60da9ef147c836db444f7a0f",
"sha256:58bcc523fc9281a3a7033280804e841d1fcec71cbd6359c643c7e06a90efb34c",
"sha256:be56018ff4790f7f1d96f500e9757c27979c37e476e21a2932746b4654955806"
]
},
"Metadata": {
"LastTagTime": "0001-01-01T00:00:00Z"
}
}
]
理解:
所有的Docker镜像都起始于一个基础镜像层,当进行修改或增加新的内容时,就会在当前镜像层之上,创建新的镜像层。
举一个简单的例子,假如基于Ubuntu Linux 16.04 创建一个新的镜像,这就是新镜像的第一层;如果在该镜像中添加Python包,就会在基础镜像之上创建第二个镜像层;如果继续添加一个安全补丁,就会创建第三个镜像层。
该镜像当前已经包含3个镜像层,如下图所示(这只是一个用于演示的很简单的例子)。
在添加额外的镜像层的同时,镜像始终保持是当前所有镜像的组合,理解这一点非常重要。下图举了一个简单的例子,每个镜像层包含 3 个文件,而镜像包含了来自两个镜像层的 6 个文件。
上图中的镜像层跟之前图中的略有区别,主要目的是便于展示文件。
下图中展示了一个稍微复杂的三层镜像,在外部看来整个镜像只有 6 个文件,这是因为最上层中的文件7是文件5的一个更新版本。
这种情况下,上层镜像层中的文件覆盖了底层镜像层中的文件。这样就使得文件的更新版本作为一个新镜像层添加到镜像当中。
Docker通过存储引擎(新版本采用快照机制)的方式实现镜像层堆栈,并保证多镜像层对外展示为统一的文件系统。
Linux上可用的存储引擎有AUFS、Overlay2、Device Mapper、Btrfs以及ZFS。顾名思义,每种存储引擎都基于Linux中对应的文件系统或者块设备技术,并且每种存储引擎都有其独有的性能特点。
Docker在Windows上仅支持windowsfilter一种存储引擎,该引擎基于NTFS文件系统之上实现了分层和CoW。下图展示了与系统显示相同的三层镜像。所有镜像层堆叠并合并,对外提供统一的视图。
特点
Docker镜像都是只读的,当容器启动时,一个新的可写层被加载到镜像的顶部!
这一层就是我们通常说的容器层,容器之下的都叫镜像层!
如何提交一个自己的镜像
commit镜像
docker commit 提交容器成为一个新的副本
# 命令和git原理类似
docker commit -m="提交的描述信息" -a="作者" 容器id 目标镜像名:[TAG]
实战测试
# 启动一个默认的tomcat
# 发现这个默认的tomcat 是没有webapps应用,镜像的原因,官方的镜像默认 webapps下面是没有文件的!
# 我自己拷贝进去了基本的文件
[root@ls-Cwj2oH9C ~]# docker exec -it 11cdc75c9c6e /bin/bash
root@11cdc75c9c6e:/usr/local/tomcat# ls
BUILDING.txt LICENSE README.md RUNNING.txt conf logs temp webapps.dist
CONTRIBUTING.md NOTICE RELEASE-NOTES bin lib native-jni-lib webapps work
root@11cdc75c9c6e:/usr/local/tomcat# cp -r webapps.dist/* webapps
# 将我们操作过的容器通过commit提交为一个镜像!我们以后就使用我们修改过的镜像即可,这就是我们自己的一个修改的镜像
学习方式:理解概念,进行实践,最后实践和理论相结合!
如果想要保存当前容器的状态,就可以通过commit来提交,获得一个镜像
就像我们之前学习的VM快照功能!
到了这里才算是入门Docker!
容器数据卷
什么是容器数据卷
docker理念回顾
将应用和环境打包成一个镜像!
数据?如果数据都在容器中,那么我们容器删除,数据就会丢失! 需求:数据可以持久化
MySQL,容器删了,删库跑路! 需求:MySQL数据可以存储在本地!
容器之间可以有一个数据共享的技术!Docker容器中产生的数据,同步到本地!
这就是卷技术!目录的挂载,将我们容器内的目录,挂载到Linux上面!
总结一句话:容器的持久化和同步操作!容器间也是可以数据共享的!
使用数据卷
方式一:直接使用命令来挂载 -v
docker run -it -v 主机目录:容器内目录
# 测试
[root@ls-Cwj2oH9C ~]# docker run -it -v /home/ceshi:/home centos /bin/bash
# 启动起来之后,我们可以通过 docker inspect 容器id
测试文件的同步
再来测试:
- 停止容器
- 宿主机上修改文件
- 启动容器
- 容器内的数据依旧是同步的
好处:我们以后修改只需要在本地修改即可,容器内会自动同步!
实战:安装MySQL
思考:MySQL的数据持久化的问题!
# 获取镜像
[root@ls-Cwj2oH9C ~]# docker pull mysql:5.7
# 运行容器,需要做数据挂载! # 安装启动mysql,需要配置密码,这是要注意的点!
# 官方测试: docker run --name some-mysql -e MYSQL_ROOT_PASSWORD=my-secret-pw -d mysql:tag
# 启动我们的mysql
-d 后台运行
-p 端口映射
-v 数据卷挂载
-e 环境配置
--name 容器名字
[root@ls-Cwj2oH9C ~]# docker run -d -p 3310:3306 -v /home/mysql/conf:/etc/mysql/conf.d -v /home/mysql/data:/var/lib/mysql -e MYSQL_ROOT_PASSWORD=123456 --name mysql01 mysql:5.7
# 启动成功之后,我们在本地使用Navicat来连接测试一下(sqlyog反复尝试都连不上,Navicat一次成功!)
# Navicat 连接到服务器的3310 --- 3310和容器内的3306映射,这个时候我们就可以连接上了!
# 在本地测试创建一个数据库test,查看一下我们映射的路径是否ok!
# 假如我们将容器删除
[root@ls-Cwj2oH9C ~]# docker rm -f mysql01
发现,我们挂载到本地的数据卷依旧没有丢失,这就实现了容器数据持久化功能!
具名和匿名挂载
# 匿名挂载
-v 容器内路径!
docker run -d -P --name nginx01 -v /etc/nginx nginx
# 查看所有的volume的情况
[root@ls-Cwj2oH9C ~]# docker volume ls
DRIVER VOLUME NAME
local 33a9eda0390dd6b15259dbf0fb1b5828f19bfb8f7e09c5467863862b839f1879
local b3e57bea4d55bfb0f3cb6640ec6f6518f424218e204826c14a220c910def5a31
local dd326255ea9dfbf32350012c3d61ec0991a1f0c52f694bab76b2c322c0f60f62
local f8f8c5df2175bf49695d6799c38b64b8843dce08889bdc0fc869749ac239bee4
local f57aac3e8dc17710ab8a1151ea48ff97354849624a9478ea4fa7a58e1fd3dec2
# 这里发现,这种就是匿名挂载,我们在 -v 只写了容器内的路径,没有写容器外的路径!
# 具名挂载
[root@ls-Cwj2oH9C home]# docker run -d -P --name nginx02 -v juming-nginx:/etc/nginx nginx
a2a98f1b0f43c47c44ee4d2f6b5047d9ffa1c182e674b8238ad377af13ee188b
[root@ls-Cwj2oH9C home]# docker volume ls
DRIVER VOLUME NAME
local 33a9eda0390dd6b15259dbf0fb1b5828f19bfb8f7e09c5467863862b839f1879
local b3e57bea4d55bfb0f3cb6640ec6f6518f424218e204826c14a220c910def5a31
local dd326255ea9dfbf32350012c3d61ec0991a1f0c52f694bab76b2c322c0f60f62
local f8f8c5df2175bf49695d6799c38b64b8843dce08889bdc0fc869749ac239bee4
local f57aac3e8dc17710ab8a1151ea48ff97354849624a9478ea4fa7a58e1fd3dec2
local juming-nginx
# 通过 -v 卷名:容器内路径
# 查看一下这个卷
所有的docker容器内的卷,没有指定目录的情况下都是在/var/lib/docker/volumes/xxxx/_data
我们通过具名挂载可以方便的找到我们的一个卷,大多数情况下都在使用具名挂载
# 如何确定是具名挂载还是匿名挂载,还是指定路径挂载!
-v 容器内路径 # 匿名挂载
-v 卷名:容器内路径 # 具名挂载
-v /宿主机路径:容器内路径 # 指定路径挂载!
拓展:
# pwd 显示当前文件路径
# 通过 -v 容器内路径:ro rw 改变读写权限
ro readonly # 只读
rw readwrite # 可读可写
# 一旦设定了这个容器权限,容器对我们挂载出来的内容就有限定了!
docker run -d -P --name nginx02 -v juming-nginx:/etc/nginx:ro nginx
docker run -d -P --name nginx02 -v juming-nginx:/etc/nginx:rw nginx
# ro 只要看到ro就说明这个路径只能通过宿主机来操作,容器内部是无法操作的!
初始DockerFile
DockerFile就是用来构建docker镜像的构建文件!命令脚本!先体验一下!
通过这个脚本可以生成镜像,镜像是一层一层的,脚本就是一个个的命令,每个命令都是一层!
# 创建一个dockerfile文件,名字可以随机 建议 Dockerfile
# 文件中的内容 指令(大写) 参数
FROM centos
VOLUME ["volume01","volume02"] # 匿名挂载
CMD echo "----end----"
CMD /bin/bash
# 这里的每个命令,就是镜像的一层!
# 启动自己写的容器
这个卷和外部一定有一个同步的目录!匿名挂载,只写了容器内的目录!
查看一下卷挂载的路径
测试一下刚才的文件是否同步出去了!
这种方式我们未来使用的十分多,因为我们通常会构建自己的镜像!
假设构建镜像的时候没有挂载卷,要手动镜像挂载 -v 卷名 : 容器内路径!
数据卷容器
多个mysql同步数据!
# 启动3个容器,通过我们刚才自己的镜像启动
# 测试,可以删除docker01,查看一下docker02和docker03是否还可以访问这个文件
# 测试依旧可以访问
多个mysql实现数据共享
[root@ls-Cwj2oH9C ~]# docker run -d -p 3310:3306 -v /home/mysql/conf:/etc/mysql/conf.d -v /home/mysql/data:/var/lib/mysql -e MYSQL_ROOT_PASSWORD=123456 --name mysql01 mysql:5.7
[root@ls-Cwj2oH9C ~]# docker run -d -p 3310:3306 -v /home/mysql/conf:/etc/mysql/conf.d -v /home/mysql/data:/var/lib/mysql -e MYSQL_ROOT_PASSWORD=123456 --name mysql02 --volumes-from mysql01 mysql:5.7
结论:
容器之间配置信息的传递,数据卷容器的生命周期一直持续到没有容器使用为止。
但是一旦持久化到了本地,这个时候,本地的数据是不会删除的!
DockerFile
DockerFile介绍
DockerFile是用来构建docker镜像的文件!命令参数脚本!
构建步骤:
- 编写一个dockerfile文件
- docker build 构建成为一个镜像
- docker run 运行镜像
- docker push 发布镜像(DockerHub、阿里云镜像仓库!)
查看一下官方是怎么做的?
发现官方的镜像都是基础包,很多功能没有,我们通常会自己搭建自己的镜像!
官方既然可以制作镜像,那么我们也可以!
DockerFile构建过程
基础知识:
- 每个保留关键字(指令)都是必须是大写字母
- 执行从上到下顺序执行
#
表示注释- 每一个指令都会创建提交一个新的镜像层,并提交!
DockerFile是面向开发的,我们以后要发布项目,做镜像,就需要编写dockerfile文件,这个文件十分简单!
Docker镜像逐渐成为企业交付的标准,必须要掌握!
步骤:开发,部署,运维。。。缺一不可!
DockerFile:构建文件,定义了一切的步骤,源代码
DockerImages:通过DockerFile构建生成的镜像,最终发布和运行的产品!
Docker容器:容器就是镜像运行起来提供服务的
DockerFile的指令
以前的话我们就是使用别人的,现在我们知道了这些指令后,我们来练习自己写一个镜像!
FROM # 基础镜像,一切从这里开始构建
MAINTAINER # 镜像是谁写的,姓名+邮箱
RUN # 镜像构建的时候需要运行的命令
ADD # 步骤,tomcat镜像,这个tomcat压缩包!添加内容
WORKDIR # 镜像的工作目录
VOLUME # 挂载的目录
EXPOSE # 暴露端口配置
CMD # 指定这个容器启动的时候要运行的命令,只有最后一个会生效,可被替代
ENTRYPOINT # 指定这个容器启动的时候要运行的命令,可以追加命令
ONBUILD # 当构建一个被继承的 DockerFile 这个时候就会运行 ONBUILD 的指令,触发指令
COPY # 类似ADD,将我们的文件拷贝到镜像中
ENV # 构建的时候设置环境变量!
实战测试
Docker Hub中99%镜像都是从这个基础镜像过来的 FROM scratch,然后配置需要的软件和配置来进行构建
创建一个自己的centos
创建出错可以查看我的博客中遇到的错误
一栏中的相关内容进行解决!
# 1 编写Dockerfile的文件
[root@ls-Cwj2oH9C dockerfile]# cat mydockerfile-centos
FROM centos:7.9.2009
MAINTAINER wydilearn<406623380@qq.com>
ENV MYPATH /usr/local
WORKDIR $MYPATH
RUN yum install vim
RUN yum install net-tools
EXPOSE 80
CMD echo $MYPATH
CMD echo "----end----"
CMD /bin/bash
# 2 通过这个文件构建镜像
# 命令 docker build -f dockerfile文件路径 -t 镜像名:[tag]
Successfully built 4ca77dadd64f
Successfully tagged mycentos:7.9.2009
# 3 测试运行
对比:之前的原生centos
工作目录默认是根目录,没有vim、ifconfig等命令
我们增加之后的镜像:
我们可以列出本地镜像的变更历史
我们平时拿到一个镜像,可以研究一下它是怎么做的了!
CMD 和 ENTRYPOINT 区别
CMD # 指定这个容器启动的时候要运行的命令,只有最后一个会生效,可被替代
ENTRYPOINT # 指定这个容器启动的时候要运行的命令,可以追加命令
测试cmd
# 编写 dockerfile 文件
[root@ls-Cwj2oH9C dockerfile]# vim dockerfile-cmd-test
FROM centos
CMD ["ls","-a"]
# 构建镜像
[root@ls-Cwj2oH9C dockerfile]# docker build -f dockerfile-cmd-test -t cmdtest .
# run运行,发现我们的ls -a 命令生效
[root@ls-Cwj2oH9C dockerfile]# docker run 08f5a6379ff7
.
..
.dockerenv
anaconda-post.log
bin
dev
etc
home
lib
lib64
# 想追加一个命令 -l ls -al
[root@ls-Cwj2oH9C dockerfile]# docker run 08f5a6379ff7 -l
docker: Error response from daemon: failed to create shim task: OCI runtime create failed: runc create failed: unable to start container process: exec: "-l": executable file not found in $PATH: unknown.
ERRO[0000] error waiting for container: context canceled
# CMD的情况下 -l 替换了CMD ["ls","-a"]命令,-l 不是命令所以报错!
测试 ENTRYPOINT
[root@ls-Cwj2oH9C dockerfile]# vim dockerfile-cmd-entrypoint
FROM centos:7.9.2009
ENTRYPOINT ["ls","-a"]
[root@ls-Cwj2oH9C dockerfile]# docker build -f dockerfile-cmd-entrypoint -t entrypoint-test .
Sending build context to Docker daemon 4.096kB
Step 1/2 : FROM centos:7.9.2009
---> eeb6ee3f44bd
Step 2/2 : ENTRYPOINT ["ls","-a"]
---> Running in a11a899f08f4
Removing intermediate container a11a899f08f4
---> db46b6b11456
Successfully built db46b6b11456
Successfully tagged entrypoint-test:latest
[root@ls-Cwj2oH9C dockerfile]# docker run d74cdaf8abb6
.
..
.dockerenv
anaconda-post.log
bin
dev
etc
home
lib
lib64
media
mnt
opt
proc
root
run
sbin
srv
sys
tmp
usr
var
# 我们的追加命令,是直接拼接在我们的 ENTRYPOINT 命令的后面!
[root@ls-Cwj2oH9C dockerfile]# docker run d74cdaf8abb6 -l
total 64
drwxr-xr-x 1 root root 4096 Jul 12 08:56 .
drwxr-xr-x 1 root root 4096 Jul 12 08:56 ..
-rwxr-xr-x 1 root root 0 Jul 12 08:56 .dockerenv
-rw-r--r-- 1 root root 12114 Nov 13 2020 anaconda-post.log
lrwxrwxrwx 1 root root 7 Nov 13 2020 bin -> usr/bin
drwxr-xr-x 5 root root 340 Jul 12 08:56 dev
drwxr-xr-x 1 root root 4096 Jul 12 08:56 etc
drwxr-xr-x 2 root root 4096 Apr 11 2018 home
lrwxrwxrwx 1 root root 7 Nov 13 2020 lib -> usr/lib
lrwxrwxrwx 1 root root 9 Nov 13 2020 lib64 -> usr/lib64
drwxr-xr-x 2 root root 4096 Apr 11 2018 media
drwxr-xr-x 2 root root 4096 Apr 11 2018 mnt
drwxr-xr-x 2 root root 4096 Apr 11 2018 opt
dr-xr-xr-x 173 root root 0 Jul 12 08:56 proc
dr-xr-x--- 2 root root 4096 Nov 13 2020 root
drwxr-xr-x 11 root root 4096 Nov 13 2020 run
lrwxrwxrwx 1 root root 8 Nov 13 2020 sbin -> usr/sbin
drwxr-xr-x 2 root root 4096 Apr 11 2018 srv
dr-xr-xr-x 13 root root 0 Jul 9 02:03 sys
drwxrwxrwt 7 root root 4096 Nov 13 2020 tmp
drwxr-xr-x 13 root root 4096 Nov 13 2020 usr
drwxr-xr-x 18 root root 4096 Nov 13 2020 var
Dockerfile中很多命令都十分的相似,我们需要了解它们的区别,我们最好的学习就是对比他们然后测试效果!
实战:Tomcat镜像
准备镜像文件 tomcat 压缩包,jdk的压缩包!
编写dockerfile文件,官方命名
Dockerfile
,build 会自动寻找这个文件,就不需要 -f 指定了!FROM centos:7.9.2009
MAINTAINER wydilearn<406623380@qq.com> COPY readme.txt /usr/local/readme.txt ADD jdk-8u333-linux-x64.tar /usr/local/
ADD apache-tomcat-10.0.22.tar.gz /usr/local/ RUN yum -y install vim ENV MYPATH /usr/local
WORKDIR $MYPATH ENV JAVA_HOME /usr/local/jdk1.8.0_333
ENV CLASSPATH $JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar
ENV CATALINA_HOME /usr/local/apache-tomcat-10.0.22
ENV CATALINA_BASE /usr/local/apache-tomcat-10.0.22
ENV PATH $PATH:$JAVA_HOME/bin:$CATALINA_HOME/lib:$CATALINA_HOME/bin EXPOSE 8080 CMD /usr/local/apache-tomcat-10.0.22/bin/startup.sh && tail -F /usr/local/apache-tomcat-10.0.22/bin
/logs/catalina.out
构建镜像
# docker build -t diytomcat .
启动镜像
访问测试
发布项目(由于做了卷挂载,我们直接在本地编写项目就可以发布了!)
<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:web="http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
id="WebApp_ID" version="2.5"> </web-app>
<%@ page language="java" contentType="text/html; charset=UTF-8"
pageEncoding="UTF-8"%>
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>hello,kuangshen</title>
</head>
<body>
Hello World!<br/>
<%
System.out.println("----my test web logs----");
%>
</body>
</html>
发现:项目部署成功,可以直接访问ok!
我们以后开发的步骤:需要掌握Dockerfile的编写!我们之后的一切都是使用docker镜像来发布运行!
发布自己的镜像
DockerHub
地址 https://hub.docker.com/ 注册自己的账号!
确定这个账号可以登录
在我们的服务器上提交自己的镜像
[root@ls-Cwj2oH9C tomcatlogs]# docker login --help Usage: docker login [OPTIONS] [SERVER] Log in to a Docker registry.
If no server is specified, the default is defined by the daemon. Options:
-p, --password string Password
--password-stdin Take the password from stdin
-u, --username string Username
登录完毕后就可以提交镜像了,就是一步 docker push
# 给自己要发布的镜像增加一个 tag
[root@ls-Cwj2oH9C tomcat]# docker tag 52f83276fc08 wydilearn/diytomcat:1.0 # docker push上去即可!自己发布的镜像尽量带上版本号
[root@ls-Cwj2oH9C tomcat]# docker push wydilearn/diytomcat:1.0
The push refers to repository [docker.io/wydilearn/diytomcat]
3c40fff9f2ee: Pushed
fc3bd8b32ed0: Pushed
f8c82bfdcfb9: Pushed
a5760cf5dc3b: Pushed
174f56854903: Mounted from library/centos
1.0: digest: sha256:e0fae8f6383fdbf05a1fc89676fd7696949fc16d378f698a60918cb16a0fabb9 size: 1373
提交的时候也是按照镜像的层级来进行提交的。
发布到阿里云镜像服务上
登录阿里云
找到容器镜像服务
创建命名空间
创建容器镜像
浏览阿里云
阿里云容器镜像就参考官方地址!
小结
Docker 网络
理解Docker0
清空所有环境
测试
三个网络
# 问题:docker 是如何处理容器网络访问的?
[root@ls-Cwj2oH9C /]# docker run -d -P --name tomcat01 tomcat
# 查看容器的内部网络地址 ip addr,发现容器启动的时候会得到一个 eth0@if2763 IP地址,docker分配的!
[root@ls-Cwj2oH9C /]# docker exec -it 232419b4b0ff /bin/bash # 进入容器安装两个命令
root@232419b4b0ff:/usr/local/tomcat# apt update && apt install -y iproute2
root@232419b4b0ff:/usr/local/tomcat# apt install iputils-ping
root@232419b4b0ff:/usr/local/tomcat# ip addr
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo
valid_lft forever preferred_lft forever
2762: eth0@if2763: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP group default
link/ether 02:42:ac:11:00:02 brd ff:ff:ff:ff:ff:ff link-netnsid 0
inet 172.17.0.2/16 brd 172.17.255.255 scope global eth0
valid_lft forever preferred_lft forever
# 思考:linux能不能ping通容器内部!
[root@ls-Cwj2oH9C /]# ping 172.17.0.2
PING 172.17.0.2 (172.17.0.2) 56(84) bytes of data.
64 bytes from 172.17.0.2: icmp_seq=1 ttl=64 time=0.047 ms
64 bytes from 172.17.0.2: icmp_seq=2 ttl=64 time=0.044 ms
# linux可以ping通容器内部
原理
我们每启动一个docker容器,docker就会给docker容器分配一个IP,我们只要安装了docker,就会有一个网卡 docker0
桥接模式,使用的技术是 evth-pair 技术!
再次测试ip addr
再启动一个容器测试,发现又多了一对网卡!
# 我们发现这个容器带来网卡,都是一对一对的
# evth-pair 就是一堆的虚拟设备接口,他们都是成对出现的,一端连着协议,一端彼此相连
# 正因为有这个特性,evth-pair充当一个桥梁,连接各种虚拟网络设备
# OpenStac,Docker容器之间的连接,OVS的连接,都是使用evth-pair技术
我们来测试下tomcat01和tomcat02是否可以ping通!
# 进入tomcat02
[root@ls-Cwj2oH9C /]# docker exec -it tomcat02 /bin/bash
root@fde1226260aa:/usr/local/tomcat# apt update && apt install -y iproute2
root@fde1226260aa:/usr/local/tomcat# apt install iputils-ping
root@fde1226260aa:/usr/local/tomcat# ping 172.17.0.2
PING 172.17.0.2 (172.17.0.2) 56(84) bytes of data.
64 bytes from 172.17.0.2: icmp_seq=1 ttl=64 time=0.087 ms
64 bytes from 172.17.0.2: icmp_seq=2 ttl=64 time=0.071 ms
结论:容器和容器之间是可以互相ping通的!
绘制一个网络模型图:
结论:tomcat01 和 tomcat02 是共用的一个路由器,docker0。
所有的容器不指定网络的情况下,都是 docker0 路由的,docker会给我们的容器分配一个默认的可用IP
小结
Docker中的所有网络接口都是虚拟的。虚拟的转发效率高!
只要容器删除,对应的一对网桥就没了!
--link
思考一个场景,我们编写了一个微服务,database url=ip:,项目不重启数据库ip换掉了,我们希望可以处理这个问题,可以通过名字来进行访问容器?
[root@ls-Cwj2oH9C ~]# docker exec -it tomcat02 ping tomcat01
ping: tomcat01: Name or service not known
# 如何可以解决呢?
# 通过--link 就可以解决网络连通问题
[root@ls-Cwj2oH9C ~]# docker run -it -d -P --name tomcat03 --link tomcat02 tomcat
371f584079471c6b8934c5ee961d741dba06884e0e85135bd0d224f685f0d6ca
[root@ls-Cwj2oH9C ~]# docker exec -it tomcat03 /bin/bash
root@371f58407947:/usr/local/tomcat# apt update && apt install -y iproute2
root@371f58407947:/usr/local/tomcat# apt install iputils-ping
root@371f58407947:/usr/local/tomcat# ping tomcat02
PING tomcat02 (172.17.0.3) 56(84) bytes of data.
64 bytes from tomcat02 (172.17.0.3): icmp_seq=1 ttl=64 time=0.111 ms
64 bytes from tomcat02 (172.17.0.3): icmp_seq=2 ttl=64 time=0.062 ms
64 bytes from tomcat02 (172.17.0.3): icmp_seq=3 ttl=64 time=0.061 ms
探究:inspect!
其实这个tomcat03就是在本地配置了tomcat02配置
# 查看 hosts 配置,在这里原理发现!
[root@ls-Cwj2oH9C ~]# docker exec -it tomcat03 /bin/bash
root@371f58407947:/usr/local/tomcat# cat /etc/hosts
127.0.0.1 localhost
::1 localhost ip6-localhost ip6-loopback
fe00::0 ip6-localnet
ff00::0 ip6-mcastprefix
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters
172.17.0.3 tomcat02 fde1226260aa
172.17.0.4 371f58407947
本质探究:--link 就是在hosts配置中增加了一个 172.17.0.3 tomcat02 fde1226260aa
我们现在用Docker,已经不建议使用 --link 了!
自定义网络!不使用docker0!
docker0的问题:它不支持容器名连接访问!
自定义网络
查看所有的docker网络
网络模式
bridge:桥接模式 docker(默认,自己创建也使用 bridge 桥接模式)
none:不配置网络
host:和宿主机共享网络
container:容器内网络连通!(用的较少!局限很大)
三种常见网络模式(补充)
bridged(桥接模式)
虚拟机和宿主计算机处于同等地位,虚拟机就像是一台真实主机一样存在于局域网中
NAT(网络地址转换模式)
宿主计算机相当于一台开启了DHCP功能的路由器,而虚拟机则是内网中的一台真实主机
host-only(仅主机模式)
相当于虚拟机通过双绞线和宿主计算机直连,而宿主计算机不提供任何路由服务。因此在Host-only模式下,虚拟机可以和宿主计算机互相访问,但是虚拟机无法访问外部网络。
测试
# 我们直接启动的命令 --net bridge,而这个就是我们的docker0
[root@ls-Cwj2oH9C /]# docker run -d -P --name tomcat01 tomcat
[root@ls-Cwj2oH9C /]# docker run -d -P --name tomcat01 --net bridge tomcat
# docker0特点,默认,域名不能访问,--link可以打通连接!
# 我们可以自定义一个网络!
# --driver bridge
# --subnet 192.168.0.0/16 192.168.0.2 192.168.255.255
# --gateway 192.168.0.1
[root@ls-Cwj2oH9C /]# docker network create --driver bridge --subnet 192.168.0.0/16 --gateway 192.168.0.1 mynet
c82c2708387b95f0d932ae395fe0dc1d3182d38a47b820584c66e39219541eb4
[root@ls-Cwj2oH9C /]# docker network ls
NETWORK ID NAME DRIVER SCOPE
1340a553ba22 bridge bridge local
6f12b7793243 host host local
c82c2708387b mynet bridge local
2581ba94b5d9 none null local
我们自己的网络就创建好了!
[root@ls-Cwj2oH9C /]# docker run -d -P --name tomcat-net-01 --net mynet tomcat
e1d698bdf7bd90daf158e00e7f3c69785590198b477e1b45ef0fb2f6d2dd8ed6
[root@ls-Cwj2oH9C /]# docker run -d -P --name tomcat-net-02 --net mynet tomcat
685b7164f606200c809c81858a291374171ed2ddf77e30e24f94fbbbbcdbe2e1
[root@ls-Cwj2oH9C /]# docker network inspect mynet
[
{
"Name": "mynet",
"Id": "c82c2708387b95f0d932ae395fe0dc1d3182d38a47b820584c66e39219541eb4",
"Created": "2022-07-16T17:38:25.818266785+08:00",
"Scope": "local",
"Driver": "bridge",
"EnableIPv6": false,
"IPAM": {
"Driver": "default",
"Options": {},
"Config": [
{
"Subnet": "192.168.0.0/16",
"Gateway": "192.168.0.1"
}
]
},
"Internal": false,
"Attachable": false,
"Ingress": false,
"ConfigFrom": {
"Network": ""
},
"ConfigOnly": false,
"Containers": {
"685b7164f606200c809c81858a291374171ed2ddf77e30e24f94fbbbbcdbe2e1": {
"Name": "tomcat-net-02",
"EndpointID": "7a3ac62a87388c10907bee1b83800d28968caf47160bec9999c3921a3e5183ff",
"MacAddress": "02:42:c0:a8:00:03",
"IPv4Address": "192.168.0.3/16",
"IPv6Address": ""
},
"e1d698bdf7bd90daf158e00e7f3c69785590198b477e1b45ef0fb2f6d2dd8ed6": {
"Name": "tomcat-net-01",
"EndpointID": "ea12cb9879b8d6801eabd3510e67e3a546888723ea743eedaec5274cca080ff0",
"MacAddress": "02:42:c0:a8:00:02",
"IPv4Address": "192.168.0.2/16",
"IPv6Address": ""
}
},
"Options": {},
"Labels": {}
}
]
# 再次测试ping连接
[root@ls-Cwj2oH9C ~]# docker exec -it tomcat-net-01 ping 192.168.0.3
PING 192.168.0.3 (192.168.0.3) 56(84) bytes of data.
64 bytes from 192.168.0.3: icmp_seq=1 ttl=64 time=0.085 ms
64 bytes from 192.168.0.3: icmp_seq=2 ttl=64 time=0.070 ms
# 现在不使用--link也可以ping名字了!
[root@ls-Cwj2oH9C ~]# docker exec -it tomcat-net-01 ping tomcat-net-02
PING tomcat-net-02 (192.168.0.3) 56(84) bytes of data.
64 bytes from tomcat-net-02.mynet (192.168.0.3): icmp_seq=1 ttl=64 time=0.055 ms
64 bytes from tomcat-net-02.mynet (192.168.0.3): icmp_seq=2 ttl=64 time=0.063 ms
我们自定义的网络docker都已经帮我们维护好了对应的关系,推荐我们平时这样使用网络!
好处:
redis - 不同的集群使用不同的网络,保证集群是安全和健康的
mysql - 不同的集群使用不同的网络,保证集群是安全和健康的
网络连通
# 测试打通 tomcat01 - mynet
# 连通之后就是将 tomcat01 放到了 mynet 网络下
# 一个容器两个ip地址!
# 阿里云服务:公网ip 私网ip
# 01 连通ok
[root@ls-Cwj2oH9C ~]# docker exec -it tomcat01 ping tomcat-net-01
PING tomcat-net-01 (192.168.0.2) 56(84) bytes of data.
64 bytes from tomcat-net-01.mynet (192.168.0.2): icmp_seq=1 ttl=64 time=0.072 ms
64 bytes from tomcat-net-01.mynet (192.168.0.2): icmp_seq=2 ttl=64 time=0.070 ms
# 02 是依旧打不通的
[root@ls-Cwj2oH9C ~]# docker exec -it tomcat02 ping tomcat-net-01
ping: tomcat-net-01: Name or service not known
结论:假设要跨网络操作别人,就需要使用 docker network connect 连通!
实战:部署Redis集群
shell脚本
# 创建网卡
[root@ls-Cwj2oH9C /]# docker network create redis --subnet 172.38.0.0/16
# 通过脚本创建六个redis配置
[root@ls-Cwj2oH9C /]# for port in $(seq 1 6); \
> do \
> mkdir -p /mydata/redis/node-${port}/conf
> touch /mydata/redis/node-${port}/conf/redis.conf
> cat << EOF >/mydata/redis/node-${port}/conf/redis.conf
> port 6379
> bind 0.0.0.0
> cluster-enabled yes
> cluster-config-file nodes.conf
> cluster-node-timeout 5000
> cluster-announce-ip 172.38.0.1${port}
> cluster-announce-port 6379
> cluster-announce-bus-port 16379
> appendonly yes
> EOF
> done
[root@ls-Cwj2oH9C conf]# docker run -p 6371:6379 -p 16371:16379 --name redis-1 \
> -v /mydata/redis/node-1/data:/data \
> -v /mydata/redis/node-1/conf/redis.conf:/etc/redis/redis.conf \
> -d --net redis --ip 172.38.0.11 redis:5.0.9-alpine3.11 redis-server /etc/redis/redis.conf
[root@ls-Cwj2oH9C conf]# docker run -p 6372:6379 -p 16372:16379 --name redis-2 \
> -v /mydata/redis/node-2/data:/data \
> -v /mydata/redis/node-2/conf/redis.conf:/etc/redis/redis.conf \
> -d --net redis --ip 172.38.0.12 redis:5.0.9-alpine3.11 redis-server /etc/redis/redis.conf
[root@ls-Cwj2oH9C conf]# docker run -p 6373:6379 -p 16373:16379 --name redis-3 \
> -v /mydata/redis/node-3/data:/data \
> -v /mydata/redis/node-3/conf/redis.conf:/etc/redis/redis.conf \
> -d --net redis --ip 172.38.0.13 redis:5.0.9-alpine3.11 redis-server /etc/redis/redis.conf
[root@ls-Cwj2oH9C conf]# docker run -p 6374:6379 -p 16374:16379 --name redis-4 \
> -v /mydata/redis/node-4/data:/data \
> -v /mydata/redis/node-4/conf/redis.conf:/etc/redis/redis.conf \
> -d --net redis --ip 172.38.0.14 redis:5.0.9-alpine3.11 redis-server /etc/redis/redis.conf
[root@ls-Cwj2oH9C conf]# docker run -p 6375:6379 -p 16375:16379 --name redis-5 \
> -v /mydata/redis/node-5/data:/data \
> -v /mydata/redis/node-5/conf/redis.conf:/etc/redis/redis.conf \
> -d --net redis --ip 172.38.0.15 redis:5.0.9-alpine3.11 redis-server /etc/redis/redis.conf
[root@ls-Cwj2oH9C conf]# docker run -p 6376:6379 -p 16376:16379 --name redis-6 \
> -v /mydata/redis/node-6/data:/data \
> -v /mydata/redis/node-6/conf/redis.conf:/etc/redis/redis.conf \
> -d --net redis --ip 172.38.0.16 redis:5.0.9-alpine3.11 redis-server /etc/redis/redis.conf
# 任意进入一个reids容器,注意使用 /bin/sh 而不是 /bin/bash
[root@ls-Cwj2oH9C conf]# docker exec -it redis-1 /bin/sh
# 创建集群
/data # redis-cli --cluster create 172.38.0.11:6379 172.38.0.12:6379 172.38.0.13:6379 172.38.0.14:6
379 172.38.0.15:6379 172.38.0.16:6379 --cluster-replicas 1
>>> Performing hash slots allocation on 6 nodes...
Master[0] -> Slots 0 - 5460
Master[1] -> Slots 5461 - 10922
Master[2] -> Slots 10923 - 16383
Adding replica 172.38.0.15:6379 to 172.38.0.11:6379
Adding replica 172.38.0.16:6379 to 172.38.0.12:6379
Adding replica 172.38.0.14:6379 to 172.38.0.13:6379
M: f142bdcc5c5d7ac81eb70d91da9987b71a79d2e2 172.38.0.11:6379
slots:[0-5460] (5461 slots) master
M: 3ab93307a4de5df775702779665ca4583abe5210 172.38.0.12:6379
slots:[5461-10922] (5462 slots) master
M: abe4ba6a98b5fe967d952ffc06060d7c07474821 172.38.0.13:6379
slots:[10923-16383] (5461 slots) master
S: ca57da80daea08a065f5add0a607edde9d11e7eb 172.38.0.14:6379
replicates abe4ba6a98b5fe967d952ffc06060d7c07474821
S: e9664d81440a18689a1d8cd00f7a191f78f0979c 172.38.0.15:6379
replicates f142bdcc5c5d7ac81eb70d91da9987b71a79d2e2
S: f972b8b774941d383a26ab31cc337c5017657ba0 172.38.0.16:6379
replicates 3ab93307a4de5df775702779665ca4583abe5210
Can I set the above configuration? (type 'yes' to accept): yes
>>> Nodes configuration updated
>>> Assign a different config epoch to each node
>>> Sending CLUSTER MEET messages to join the cluster
Waiting for the cluster to join
...
>>> Performing Cluster Check (using node 172.38.0.11:6379)
M: f142bdcc5c5d7ac81eb70d91da9987b71a79d2e2 172.38.0.11:6379
slots:[0-5460] (5461 slots) master
1 additional replica(s)
M: abe4ba6a98b5fe967d952ffc06060d7c07474821 172.38.0.13:6379
slots:[10923-16383] (5461 slots) master
1 additional replica(s)
S: ca57da80daea08a065f5add0a607edde9d11e7eb 172.38.0.14:6379
slots: (0 slots) slave
replicates abe4ba6a98b5fe967d952ffc06060d7c07474821
S: f972b8b774941d383a26ab31cc337c5017657ba0 172.38.0.16:6379
slots: (0 slots) slave
replicates 3ab93307a4de5df775702779665ca4583abe5210
S: e9664d81440a18689a1d8cd00f7a191f78f0979c 172.38.0.15:6379
slots: (0 slots) slave
replicates f142bdcc5c5d7ac81eb70d91da9987b71a79d2e2
M: 3ab93307a4de5df775702779665ca4583abe5210 172.38.0.12:6379
slots:[5461-10922] (5462 slots) master
1 additional replica(s)
[OK] All nodes agree about slots configuration.
>>> Check for open slots...
>>> Check slots coverage...
[OK] All 16384 slots covered.
/data # redis-cli -c
127.0.0.1:6379> cluster info
127.0.0.1:6379> cluster nodes
127.0.0.1:6379> set a b
[root@ls-Cwj2oH9C ~]# docker stop redis-3
redis-3
127.0.0.1:6379> get a
-> Redirected to slot [15495] located at 172.38.0.14:6379
"b"
docker搭建redis集群完成!
我们使用了docker之后,所有的技术都会慢慢的变得简单起来!
SpringBoot微服务打包Docker镜像
构建springboot项目
@RestController
public class HelloController { @RequestMapping("/hello")
public String hello(){
return "hello,wydilearn";
}
}
打包应用
编写dockerfile
FROM java:8 COPY *.jar /app.jar CMD ["--server.port=8080"] EXPOSE 8080 ENTRYPOINT ["java","-jar","/app.jar"]
构建镜像
[root@ls-Cwj2oH9C home]# mkdir idea
[root@ls-Cwj2oH9C home]# cd idea
[root@ls-Cwj2oH9C idea]# ls
demo1-0.0.1-SNAPSHOT.jar Dockerfile
[root@ls-Cwj2oH9C idea]# docker build -t wydilearn .
发布运行!
[root@ls-Cwj2oH9C idea]# docker run -d -P --name wydilearn-springboot-web wydilearn
cd4d8f37d9e980af091eceac6ef30f51b9291fc415c53457285353881e19f84b
[root@ls-Cwj2oH9C idea]# docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
cd4d8f37d9e9 wydilearn "java -jar /app.jar …" 37 seconds ago Up 36 seconds 0.0.0.0:49163->8080/tcp, :::49163->8080/tcp wydilearn-springboot-web
[root@ls-Cwj2oH9C idea]# curl localhost:49163
{"timestamp":"2022-07-17T04:04:03.880+00:00","status":404,"error":"Not Found","path":"/"}
[root@ls-Cwj2oH9C idea]# curl localhost:49163/hello
以后我们使用了Docker之后,给别人交付的就是一个镜像即可!
到了这里我们已经完全够用了Docker!
未完待续。。。
Docker详解(上)的更多相关文章
- Docker详解(二)
目录 1.Docker常用命令 1.1 镜像命令 1.2 容器命令 1.2.1 常用的容器命令 1.2.2 重要的容器命令 序言:上一章我们初步介绍了一下Docker的概念,那么这次我们着手于Dock ...
- Docker详解(三)
目录 1. Docker镜像 1.1 镜像存储 1.2 base镜像 1.3 镜像Commit 2. Docker容器数据卷 2.1 基本介绍 2.2 数据卷 2.3 数据卷容器 序言:前两章我们主要 ...
- Docker详解(四) — Dockerfile剖析
目录 1.Dockfile简介 2. Dockerfile构建过程解析 3. Dockerfile体系结构 4. 案例 4.1 自定义mycentos 4.2 CMD/ENTRYPOINT 镜像案例 ...
- IE8“开发人员工具”使用详解上(各级菜单详解)
来源: http://www.cnblogs.com/JustinYoung/archive/2009/03/24/kaifarenyuangongju.html IE8“开发人员工具”使用详解上(各 ...
- C++框架_之Qt的窗口部件系统的详解-上
C++框架_之Qt的窗口部件系统的详解-上 第一部分概述 第一次建立helloworld程序时,曾看到Qt Creator提供的默认基类只有QMainWindow.QWidget和QDialog三种. ...
- [js高手之路]深入浅出webpack教程系列2-配置文件webpack.config.js详解(上)
[js高手之路]深入浅出webpack教程系列索引目录: [js高手之路]深入浅出webpack教程系列1-安装与基本打包用法和命令参数 [js高手之路]深入浅出webpack教程系列2-配置文件we ...
- SSL/TLS协议详解(上):密码套件,哈希,加密,密钥交换算法
本文转载自SSL/TLS协议详解(上):密码套件,哈希,加密,密钥交换算法 导语 作为一名安全爱好者,我一向很喜欢SSL(目前是TLS)的运作原理.理解这个复杂协议的基本原理花了我好几天的时间,但只要 ...
- Linux常用命令详解上
Linux常用命令详解上 目录 一.shell 二.Linux命令 2.1.内部命令与外部命令的区别 2.2.Linux命令行的格式 2.3.编辑Linux命令行的辅助操作 2.4.获得命令帮助的方法 ...
- Docker详解(一)——
Docker详解 https://www.cnblogs.com/antLaddie/p/14276726.html
随机推荐
- Linux下安装部署NodeJS完整步骤
关注「开源Linux」,选择"设为星标" 回复「学习」,有我为您特别筛选的学习资料~ NodeJS是一个开源,跨平台,轻量级的JavaScript运行时环境,可用于构建可扩展的网络 ...
- 1┃音视频直播系统之浏览器中通过WebRTC访问摄像头
一.WebRTC的由来 对于前端开发小伙伴而言,如果用 JavaScript 做音视频处理 在以前是不可想象的,因为首先就要考虑浏览器的性能是否跟得上音视频的采集 但是 Google 作为国际顶尖科技 ...
- django-rest-framework 基础二 序列化器和路由
django-rest-framework 基础二 序列化器和路由 目录 django-rest-framework 基础二 序列化器和路由 1. 序列化器 1.1 Serializer的使用 1.2 ...
- Nginx的mirror指令能干啥?
mirror 流量复制 Nginx的 mirror 指令来自于 ngx_http_mirror_module 模块 Nginx Version > 1.13.4 mirror 指令提供的核心功能 ...
- Git 后续——分支与协作
Git 后续--分支与协作 本文写于 2020 年 9 月 1 日 之前一篇文章写了 Git 的基础用法,但那其实只是「单机模式」,Git 之所以在今天被如此广泛的运用,是脱不开分支系统这一概念的. ...
- redis 2 主从和哨兵
主从: 概念:将一台redis服务器数据复制到其他redis服务器,前者是master,后者是slave.数据复制是单向,从主节点复制到从节点.master以写为主,slave以读为主一个zhu主节点 ...
- grpc-java源码环境编译
1. Clone 1.1 git clone https://github.com/grpc/grpc-java.git 1.2 idea 打开grpc-java工程 2.compile 2.1 ja ...
- Python <算法思想集结>之初窥基础算法
1. 前言 数据结构和算法是程序的 2 大基础结构,如果说数据是程序的汽油,算法则就是程序的发动机. 什么是数据结构? 指数据在计算机中的存储方式,数据的存储方式会影响到获取数据的便利性. 现实生活中 ...
- ElasticSearch7.3学习(二十八)----聚合实战之电视案例
一.电视案例 1.1 数据准备 创建索引及映射 建立价格.颜色.品牌.售卖日期 字段 PUT /tvs PUT /tvs/_mapping { "properties": { &q ...
- 走进Linux的世界
开源软件Linux的起源: Linux--操作系统. Linux,1991年Linux之父林纳斯 本纳第克特 托瓦兹,创建了Linux操作系统内核(开源). Linux的发行版和RHCE 1.Linu ...