OpenMP Sections Construct 实现原理以及源码分析

前言

在本篇文章当中主要给大家介绍 OpenMP 当中主要给大家介绍 OpenMP 当中 sections construct 的实现原理以及他调用的动态库函数分析。如果已经了解过了前面的关于 for 的调度方式的分析,本篇文章就非常简单了。

编译器角度分析

在这一小节当中我们将从编译器角度去分析编译器会怎么处理 sections construct ,我们以下面的 sections construct 为例子,看看编译器是如何处理 sections construct 的。

#pragma omp sections
{
#pragma omp section
stmt1;
#pragma omp section
stmt2;
#pragma omp section
stmt3;
}

上面的代码会被编译器转换成下面的形式,其中 GOMP_sections_start 和 GOMP_sections_next 是并发安全的,他们都会返回一个数据表示第几个 omp section 代码块,其中 GOMP_sections_start 的参数是表示有几个 omp section 代码块,并且返回给线程一个整数表示线程需要执行第几个 section 代码块,这两个函数的意义不同的是在 GOMP_sections_start 当中会进行一些数据的初始化操作。当两个函数返回 0 的时候表示所有的 section 都被执行完了,从而退出 for 循环。

for (i = GOMP_sections_start (3); i != 0; i = GOMP_sections_next ())
switch (i)
{
case 1:
stmt1;
break;
case 2:
stmt2;
break;
case 3:
stmt3;
break;
}
GOMP_barrier ();

动态库函数分析

事实上在函数 GOMP_sections_start 和函数 GOMP_sections_next 当中调用的都是我们之前分析过的函数 gomp_iter_dynamic_next ,这个函数实际上就是让线程始终原子指令去竞争数据块(chunk),这个特点和 sections 需要完成的语意是相同的,只不过 sections 的块大小(chunk size)都是等于 1 的,因为一个线程一次只能够执行一个 section 代码块。

unsigned
GOMP_sections_start (unsigned count)
{
// 参数 count 的含义就是表示一共有多少个 section 代码块
// 得到当线程的相关数据
struct gomp_thread *thr = gomp_thread ();
long s, e, ret;
// 进行数据的初始化操作
// 将数据的 chunk size 设置等于 1
// 分割 chunk size 的起始位置设置成 1 因为根据上面的代码分析 0 表示退出循环 因此不能够使用 0 作为分割的起始位置
if (gomp_work_share_start (false))
{
// 这里传入 count 作为参数的原因是需要设置 chunk 分配的最终位置 具体的源代码在下方
gomp_sections_init (thr->ts.work_share, count);
gomp_work_share_init_done ();
}
// 如果获取到一个 section 的执行权 gomp_iter_dynamic_next 返回 true 否则返回 false
// s 和 e 分别表示 chunk 的起始位置和终止位置 但是在 sections 当中需要注意的是所有的 chunk size 都等于 1
// 这也很容易理解一次执行一个 section 代码块
if (gomp_iter_dynamic_next (&s, &e))
ret = s;
else
ret = 0;
return ret;
} // 下面是部分 gomp_sections_init 的代码
static inline void
gomp_sections_init (struct gomp_work_share *ws, unsigned count)
{
ws->sched = GFS_DYNAMIC;
ws->chunk_size = 1; // 设置 chunk size 等于 1
ws->end = count + 1L; // 因为一共有 count 个 section 块
ws->incr = 1; // 每次增长一个
ws->next = 1; // 从 1 开始进行 chunk size 的分配 因为 0 表示退出循环(编译器角度分析)
} unsigned
GOMP_sections_next (void)
{
// 这个函数就比较容易理解了 就是获取一个 chunk 拿到对应的 section 的执行权
long s, e, ret;
if (gomp_iter_dynamic_next (&s, &e))
ret = s;
else
ret = 0;
return ret;
} // 下面的函数在之前的很多文章当中都分析过了 这里不再进行分析
// 下面的函数的主要过程就是使用 CAS 指令不断的进行尝试,直到获取成功或者全部获取完成 没有 chunk 需要分配
bool
gomp_iter_dynamic_next (long *pstart, long *pend)
{
struct gomp_thread *thr = gomp_thread ();
struct gomp_work_share *ws = thr->ts.work_share;
long start, end, nend, chunk, incr; end = ws->end;
incr = ws->incr;
chunk = ws->chunk_size; if (__builtin_expect (ws->mode, 1))
{
long tmp = __sync_fetch_and_add (&ws->next, chunk);
if (incr > 0)
{
if (tmp >= end)
return false;
nend = tmp + chunk;
if (nend > end)
nend = end;
*pstart = tmp;
*pend = nend;
return true;
}
else
{
if (tmp <= end)
return false;
nend = tmp + chunk;
if (nend < end)
nend = end;
*pstart = tmp;
*pend = nend;
return true;
}
} start = ws->next;
while (1)
{
long left = end - start;
long tmp; if (start == end)
return false; if (incr < 0)
{
if (chunk < left)
chunk = left;
}
else
{
if (chunk > left)
chunk = left;
}
nend = start + chunk; tmp = __sync_val_compare_and_swap (&ws->next, start, nend);
if (__builtin_expect (tmp == start, 1))
break; start = tmp;
} *pstart = start;
*pend = nend;
return true;
}

总结

在本篇文章当中主要介绍了 OpenMP 当中 sections 的实现原理和相关的动态库函数分析,关于 sections 重点在编译器会如何对 sections 的编译指导语句进行处理的,动态库函数和 for 循环的动态调度方式是一样的,只不过 chunk size 设置成 1,分块的起始位置等于 1,分块的最终值是 section 代码块的个数,最终在动态调度的方式使用 CAS 不断获取 section 的执行权,指导所有的 section 被执行完成。


更多精彩内容合集可访问项目:https://github.com/Chang-LeHung/CSCore

关注公众号:一无是处的研究僧,了解更多计算机(Java、Python、计算机系统基础、算法与数据结构)知识。

OpenMP Sections Construct 实现原理以及源码分析的更多相关文章

  1. OpenMP Parallel Construct 实现原理与源码分析

    OpenMP Parallel Construct 实现原理与源码分析 前言 在本篇文章当中我们将主要分析 OpenMP 当中的 parallel construct 具体时如何实现的,以及这个 co ...

  2. OpenMP 线程同步 Construct 实现原理以及源码分析(上)

    OpenMP 线程同步 Construct 实现原理以及源码分析(上) 前言 在本篇文章当中主要给大家介绍在 OpenMP 当中使用的一些同步的 construct 的实现原理,如 master, s ...

  3. OpenMP 线程同步 Construct 实现原理以及源码分析(下)

    OpenMP 线程同步 Construct 实现原理以及源码分析(下) 前言 在上面文章当中我们主要分析了 flush, critical, master 这三个 construct 的实现原理.在本 ...

  4. OpenCV学习笔记(27)KAZE 算法原理与源码分析(一)非线性扩散滤波

    http://blog.csdn.net/chenyusiyuan/article/details/8710462 OpenCV学习笔记(27)KAZE 算法原理与源码分析(一)非线性扩散滤波 201 ...

  5. ConcurrentHashMap实现原理及源码分析

    ConcurrentHashMap实现原理 ConcurrentHashMap源码分析 总结 ConcurrentHashMap是Java并发包中提供的一个线程安全且高效的HashMap实现(若对Ha ...

  6. HashMap和ConcurrentHashMap实现原理及源码分析

    HashMap实现原理及源码分析 哈希表(hash table)也叫散列表,是一种非常重要的数据结构,应用场景及其丰富,许多缓存技术(比如memcached)的核心其实就是在内存中维护一张大的哈希表, ...

  7. (转)ReentrantLock实现原理及源码分析

    背景:ReetrantLock底层是基于AQS实现的(CAS+CHL),有公平和非公平两种区别. 这种底层机制,很有必要通过跟踪源码来进行分析. 参考 ReentrantLock实现原理及源码分析 源 ...

  8. 【转】HashMap实现原理及源码分析

    哈希表(hash table)也叫散列表,是一种非常重要的数据结构,应用场景极其丰富,许多缓存技术(比如memcached)的核心其实就是在内存中维护一张大的哈希表,而HashMap的实现原理也常常出 ...

  9. 【OpenCV】SIFT原理与源码分析:DoG尺度空间构造

    原文地址:http://blog.csdn.net/xiaowei_cqu/article/details/8067881 尺度空间理论   自然界中的物体随着观测尺度不同有不同的表现形态.例如我们形 ...

  10. 《深入探索Netty原理及源码分析》文集小结

    <深入探索Netty原理及源码分析>文集小结 https://www.jianshu.com/p/239a196152de

随机推荐

  1. [排序算法] 归并排序 (C++)

    归并排序解释 归并排序 Merge Sort 是典型的分治法的应用,其算法步骤完全遵循分治模式. 分治法思想 分治法 思想: 将原问题分解为几个规模较小但又保持原问题性质的子问题,递归求解这些子问题, ...

  2. 【element】el-table-column日期格式化

    要对一列日期进行格式化.可使用formatter属性,它用于格式化指定列的值,接受一个Function,会传入两个参数:row和column,可以根据自己的需求进行处理. 参阅element官网 在e ...

  3. fbterm的配置,纯文本终端显示中文

    安装 fbterm sudo apt-get install fbterm 设置普通用户可以执行 fbterm 命令 sudo adduser username video #username为用户名 ...

  4. ArcGIS API for JS 访问浏览器提示不安全链接的服务时 如何设置

    当我们通过ArcGISServer发布了服务后,首先要在要访问的计算机上通过浏览器访问下服务是否可用.但有时候会出现不安全的标识. 如果这样的链接直接放到代码中,可能会加载失败. 代码如下. var ...

  5. WEB入门——爆破21-28

    WEB21 首先尝试网站后台常见登陆的弱口令,发现错误   则使用burp suite抓包试试看 通过分析,在未填入账号密码时,响应头如下所示: 填入弱口令账号密码,发现响应头如下: 则对应可知账号密 ...

  6. Hadoop安装-分布式-Fully

    Hadoop安装-分布式-Fully 〇.所需资料 一.配置 1.基础配置 (1)系统安装 (2)hostname主机名配置 (3)ip地址.dns.hosts映射文件配置 (4)关闭防火墙与seli ...

  7. 线程、GIL全局解释器锁、进程池与线程池

    目录 多进程实现TCP服务端并发 互斥锁代码实操 线程理论 创建线程的两种方式 多线程实现TCP服务端并发 线程的诸多特性 GIL全局解释器锁 验证GIL的存在 GIL与普通互斥锁 python多线程 ...

  8. 在linux中安装mysql5.7

    安装前准备: 确保你的CentOS6.10使用的镜像url是可被访问的!!(可参考文章:https://blog.csdn.net/qq_39946015/article/details/111086 ...

  9. [机器学习] Yellowbrick使用笔记8-模型选择可视化

    Yellowbrick可视化工具旨在指导模型选择过程.一般来说,模型选择是一个搜索问题,定义如下:给定N个由数值属性描述的实例和(可选)一个估计目标,找到一个由特征.算法和最适合数据的超参数组成的三元 ...

  10. Python网络爬虫get方法出现乱码的解决的三种方案

    给大家祭出网络爬虫过程中三种中文乱码的处理方案,希望对大家的学习有所帮助. 方案一 将requests.get().text改为requests.get().content 我们可以看到通过text( ...