Warmup小记
什么是warmup
热身,在刚刚开始训练时以很小的学习率进行训练,使得网络熟悉数据,随着训练的进行学习率慢慢变大,到了一定程度,以设置的初始学习率进行训练,接着过了一些inter后,学习率再慢慢变小;
学习率变化:上升——平稳——下降
为什么用warmup
- 有助于减缓模型在初始阶段对mini-batch的提前过拟合现象,保持分布的平稳
- 有助于保持模型深层的稳定性
可以认为,刚开始模型对数据的“分布”理解为零,或者是说“均匀分布”(当然这取决于你的初始化);在第一轮训练的时候,每个数据点对模型来说都是新的,模型会很快地进行数据分布修正,如果这时候学习率就很大,极有可能导致开始的时候就对该数据“过拟合”,后面要通过多轮训练才能拉回来,浪费时间。当训练了一段时间(比如两轮、三轮)后,模型已经对每个数据点看过几遍了,或者说对当前的batch而言有了一些正确的先验,较大的学习率就不那么容易会使模型学偏,所以可以适当调大学习率。这个过程就可以看做是warmup。
当模型训到一定阶段后(比如十个epoch),模型的分布就已经比较固定了,或者说能学到的新东西就比较少了。如果还沿用较大的学习率,就会破坏这种稳定性,用我们通常的话说,就是已经接近loss的local optimal了,为了靠近这个point,我们就要慢慢来。
这里只摘录了一小段,参考文献 [1] 解释的很好。
learning rate schedule
warmup和learning schedule是类似的,只是学习率变化不同。如图
learning rate schedule
tensorflow 中有几种不同的learning rate schedule,以上图的3种为例,更多schedule可以直达官网
# CosineDecay
cosine_learning_rate_schedule = tf.keras.optimizers.schedules.CosineDecay(0.001,4000)
plt.plot(cosine_learning_rate_schedule(tf.range(40000, dtype=tf.float32)),label="cosine")
# ExponentialDecay
exp_learning_rate_schedule = tf.keras.optimizers.schedules.ExponentialDecay(
0.001, 4000, 0.9, staircase=False, name=None
)
plt.plot(exp_learning_rate_schedule(tf.range(40000, dtype=tf.float32)),label="exp")
# PiecewiseConstantDecay
boundaries = [10000, 20000,30000]
values = [0.001, 0.0008, 0.0004,0.0001]
piecewise_learning_rate_schedule = tf.keras.optimizers.schedules.PiecewiseConstantDecay(
boundaries, values)
plt.plot([piecewise_learning_rate_schedule(step) for step in tf.range(40000, dtype=tf.float32)],label="piecewise")
# 自定义 Schedule
my_learning_rate_schedule = MySchedule(0.001)
plt.plot([my_learning_rate_schedule(step) for step in tf.range(40000, dtype=tf.float32)],label="warmup")
plt.title("Learning rate schedule")
plt.ylabel("Learning Rate")
plt.xlabel("Train Step")
plt.legend()
# 自定义 Schedule
class MySchedule(tf.keras.optimizers.schedules.LearningRateSchedule):
def __init__(self, initial_learning_rate, warmup_steps=4000):
super(MySchedule, self).__init__()
self.initial_learning_rate = initial_learning_rate
self.warmup_steps = warmup_steps
def __call__(self, step):
if step > self.warmup_steps:
return self.initial_learning_rate * self.warmup_steps * step ** -1
else:
return self.initial_learning_rate * step * (self.warmup_steps ** -1)
warmup in transformer
Noam Optimizer
class CustomSchedule(tf.keras.optimizers.schedules.LearningRateSchedule):
def __init__(self, d_model, warmup_steps=4000):
super(CustomSchedule, self).__init__()
self.d_model = d_model
self.d_model = tf.cast(self.d_model, tf.float32)
self.warmup_steps = warmup_steps
def __call__(self, step):
arg1 = tf.math.rsqrt(step)
arg2 = step * (self.warmup_steps ** -1.5)
return tf.math.rsqrt(self.d_model) * tf.math.minimum(arg1, arg2)
learning_rate = CustomSchedule(d_model)
optimizer = tf.keras.optimizers.Adam(learning_rate, beta_1=0.9, beta_2=0.98,
epsilon=1e-9)
temp_learning_rate_schedule = CustomSchedule(128)
plt.plot(temp_learning_rate_schedule(tf.range(40000, dtype=tf.float32)))
plt.ylabel("Learning Rate")
plt.xlabel("Train Step")
关于warmup参数
一般可取训练steps的10%,参考BERT。这里可以根据具体任务进行调整,主要需要通过warmup来使得学习率可以适应不同的训练集合,另外我们也可以通过训练误差观察loss抖动的关键位置,找出合适的学习率。[4]
references
【1】神经网络中 warmup 策略为什么有效;有什么理论解释么? - 香侬科技的回答 - 知乎 https://www.zhihu.com/question/338066667/answer/771252708
【2】tf官方文档 tf.keras.optimizers.schedules. https://www.tensorflow.org/versions/r2.6/api_docs/python/tf/keras/optimizers/schedules
【3】理解语言的 Transformer 模型. https://www.tensorflow.org/tutorials/text/transformer#优化器(optimizer)
【4】聊一聊学习率预热linear warmup. https://cloud.tencent.com/developer/article/1929850
Warmup小记的更多相关文章
- [原]Paste.deploy 与 WSGI, keystone 小记
Paste.deploy 与 WSGI, keystone 小记 名词解释: Paste.deploy 是一个WSGI工具包,用于更方便的管理WSGI应用, 可以通过配置文件,将WSGI应用加载起来. ...
- MySql 小记
MySql 简单 小记 以备查看 1.sql概述 1.什么是sql? 2.sql发展过程? 3.sql标准与方言的关系? 4.常用数据库? 5.MySql数据库安装? 2.关键概念 表结构----- ...
- Git小记
Git简~介 Git是一个分布式版本控制系统,其他的版本控制系统我只用过SVN,但用的时间不长.大家都知道,分布式的好处多多,而且分布式已经包含了集中式的几乎所有功能.Linus创造Git的传奇经历就 ...
- 广州PostgreSQL用户会技术交流会小记 2015-9-19
广州PostgreSQL用户会技术交流会小记 2015-9-19 今天去了广州PostgreSQL用户会组织的技术交流会 分别有两个session 第一个讲师介绍了他公司使用PostgreSQL-X2 ...
- 东哥读书小记 之 《MacTalk人生元编程》
一直以来的自我感觉:自己是个记性偏弱的人.反正从小读书就喜欢做笔记(可自己的字写得巨丑无比,尼玛不科学呀),抄书这事儿真的就常发生俺的身上. 因为那时经常要背诵课文之类,反正为了怕自己忘记, ...
- Paypal支付小记
Paypal支付小记 *:first-child { margin-top: 0 !important; } body>*:last-child { margin-bottom: 0 !impo ...
- IIS 7.5 Application Warm-Up Module
http://www.cnblogs.com/shanyou/archive/2010/12/21/1913199.html 有些web应用在可以处理用户访问之前,需要装载很多的数据,或做一些花费很大 ...
- linux 下cmake 编译 ,调用,调试 poco 1.6.0 小记
上篇文章 小记了: 关于 Poco::TCPServer框架 (windows 下使用的是 select模型) 学习笔记. http://www.cnblogs.com/bleachli/p/4352 ...
- mongodb入门学习小记
Mongodb 简单入门(个人学习小记) 1.安装并注册成服务:(示例) E:\DevTools\mongodb3.2.6\bin>mongod.exe --bind_ip 127.0.0.1 ...
随机推荐
- Python 基础知识自检,离深入掌握 Python 还有多远
1. 模块化编程思想 模块化编程是 Python 的基本思想.初学 Python,都应该使用过小海龟.随机.数学模块.使用模块之前,需要导入模块,然后根据自己的问题需要使用这些模块. Python 提 ...
- Docker——常用命令
常用命令 docker version # 显示docker的版本信息 docker info # 显示docker的系统信息,包括镜像和容器的数量 docker 命令 --help # 帮助命令,中 ...
- 字符串的高级应用-char a[100] = "1+2=;3-2=;2*5=;8/4=;" 得到char a[100] ="1+2=3;3-2=1;2*5=10;8/4=2;"
1 #include<stdio.h> 2 #include<string.h> 3 4 int main() 5 { 6 char a[100] = "1+2=;3 ...
- Linux下使用Google Authenticator配置SSH登录动态验证码
1.一般ssh登录服务器,只需要输入账号和密码.2.本教程的目的:在账号和密码之间再增加一个验证码,只有输入正确的验证码之后,再输入密码才能登录.这样就增强了ssh登录的安全性.3.账号.验证码.密码 ...
- SQL注入常用命令
1. 数据库查询版本 Mssql select @@version Mysql select vresion()/select @@version oracle select banner from ...
- SQLMap参数命令
SQLMap参数命令 --method=<http方法> 指定使用的http方法 --data=<post数据> 提交post数据并对post数据进行测试 --param- ...
- python练习册 每天一个小程序 第0005题
1 # -*-coding:utf-8-*- 2 __author__ = 'Deen' 3 ''' 4 题目说明: 你有一个目录,装了很多照片,把它们的尺寸变成都不大于 iPhone5 分辨率的大小 ...
- 《前端运维》三、Docker--2其他
一.制作DockerFile docker的镜像类似于用一层一层的文件组成.inspect命令可以查看镜像或容器的的信息,其中Layers就是镜像的层文件,只读不能修改,基于镜像创建的容器会共享这些层 ...
- python -sorted 学习
跟C++ STL中的sort的用法类似,sorted用来对列表进行排序 比如: list = [3,4,82,66,22,11] 用sorted(list),就会对对list这个表进行排序 如果,so ...
- 🍛 餐厅吃饭版理解 IO 模型:阻塞 / 非阻塞 / IO 复用 / 信号驱动 / 异步
IO 概念 一个基本的 IO,它会涉及到两个系统对象,一个是调用这个 IO 的进程对象,另一个就是系统内核 (kernel).当一个 read 操作发生时,它会经历两个阶段: 通过 read 系统调用 ...