很容易想到容斥,计算不包含质数的方案数和总方案数。

设 \(f[n][i]\) 表示长度为 \(n\) 的序列,每个元素的和对 \(p\) 取模的结果。

容易有 \(f[n][i]=\sum_{j=0}^pf[n-1][i-j\bmod p]\times g[j]\),\(g[j]\) 代表选出的数(非质数或 \([1,m]\) 的整数)对 \(p\) 取模为 \(j\) 的数的数量。

容易发现这是一个循环卷积,容易做到 \(O(p^2\log n)\)。

我们知道 \(DFT\) 做的也是循环卷积,所以我们把 \(w_n^{0\sim n-1}\) 拉出来,将 \(g\) 看做多项式,带入这些点值后快速幂,最后 \(IDFT\) 可以做到 \(O(p^2+p\log n)\)。

但是 \(20170408\) 不是质数 是省选的日期,进行质因数分解后可能系数没有下标,所以写了个 \(O(p^2\log n)\) 就溜了(

#include<cstdio>
typedef unsigned ui;
const ui M=105,N=2e7+5,mod=20170408;
ui n,m,p,g[M];bool zhi[N];
inline void times(ui*f,ui*g){
static ui sav[M<<1];
for(ui i=0;i<p;++i)for(ui j=0;j<p;++j)sav[i+j]=(sav[i+j]+1ull*f[i]*g[j])%mod;
for(ui i=0;i<p;++i)f[i]=(sav[i]+sav[i+p])%mod,sav[i]=sav[i+p]=0;
}
inline void sieve(const ui&M){
for(ui i=2;i*i<=M;++i)if(!zhi[i])for(ui j=i*i;j<=M;j+=i)zhi[j]=true;zhi[1]=true;
}
inline ui pow(ui*g,ui n){
static ui f[M];
for(ui i=0;i<p;++i)f[i]=0;f[0]=1;
for(;n;n>>=1,times(g,g))if(n&1)times(f,g);
return f[0];
}
signed main(){
ui sum1,sum2;
scanf("%u%u%u",&n,&m,&p);sieve(m);
const ui&x=m%p,&y=m/p;
for(ui i=0;i<p;++i)g[i]=1<=i&&i<=x?y+1:y;
sum1=pow(g,n);
for(ui i=0;i<p;++i)g[i]=0;
for(ui j=1,i=1;i<=m;++i){
if(zhi[i])++g[j];if(++j==p)j=0;
}
sum2=pow(g,n);
printf("%u",(mod+sum1-sum2)%mod);
}

LGP3702题解的更多相关文章

  1. 2016 华南师大ACM校赛 SCNUCPC 非官方题解

    我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...

  2. noip2016十连测题解

    以下代码为了阅读方便,省去以下头文件: #include <iostream> #include <stdio.h> #include <math.h> #incl ...

  3. BZOJ-2561-最小生成树 题解(最小割)

    2561: 最小生成树(题解) Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1628  Solved: 786 传送门:http://www.lyd ...

  4. Codeforces Round #353 (Div. 2) ABCDE 题解 python

    Problems     # Name     A Infinite Sequence standard input/output 1 s, 256 MB    x3509 B Restoring P ...

  5. 哈尔滨理工大学ACM全国邀请赛(网络同步赛)题解

    题目链接 提交连接:http://acm-software.hrbust.edu.cn/problemset.php?page=5 1470-1482 只做出来四道比较水的题目,还需要加强中等题的训练 ...

  6. 2016ACM青岛区域赛题解

    A.Relic Discovery_hdu5982 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Jav ...

  7. poj1399 hoj1037 Direct Visibility 题解 (宽搜)

    http://poj.org/problem?id=1399 http://acm.hit.edu.cn/hoj/problem/view?id=1037 题意: 在一个最多200*200的minec ...

  8. 网络流n题 题解

    学会了网络流,就经常闲的没事儿刷网络流--于是乎来一发题解. 1. COGS2093 花园的守护之神 题意:给定一个带权无向图,问至少删除多少条边才能使得s-t最短路的长度变长. 用Dijkstra或 ...

  9. CF100965C题解..

    求方程 \[ \begin{array}\\ \sum_{i=1}^n x_i & \equiv & a_1 \pmod{p} \\ \sum_{i=1}^n x_i^2 & ...

随机推荐

  1. docker的使用 (2)

    使用Docker 想要玩转Docker,最简单的办法就是马上用Docker创建一些自己学习和工作中需要用到的容器,下面我们带着大家一起来创建这些容器. 运行Nginx Nginx是高性能的Web服务器 ...

  2. linux 进程信号

    转载请注明来源:https://www.cnblogs.com/hookjc/ signal 函数的使用方法简单,但并不属于 POSIX 标准,在各类 UNIX 平台上的实现不尽相同,因此其用途受 到 ...

  3. 友盟分享,极光推送Demo

    友盟分享SDK下载及官方文档 http://dev.umeng.com/social/ios/detail-share 1.注册应用获取App友盟Appkey(556d14ad67e58eb08400 ...

  4. Net6 DI源码分析Part4 CallSiteFactory ServiceCallSite

    Net6 CallSiteFactory ServiceCallSite, CallSiteChain abstract class ServiceCallSite ServiceCallSite是个 ...

  5. 将自己的web应用发布到Tomcat

    方法一:(用这个方法最好先把ROOT文件夹备份好,不建议使用) 1,打开tomcat 的目录,在webapps 的目录下, 把命名为ROOT 的文件夹删掉, 然后把自己的war 包更名为 ROOT.w ...

  6. Java中的多线程你只要看这一篇就够了(引用)

    引 如果对什么是线程.什么是进程仍存有疑惑,请先Google之,因为这两个概念不在本文的范围之内. 用多线程只有一个目的,那就是更好的利用cpu的资源,因为所有的多线程代码都可以用单线程来实现.说这个 ...

  7. vue 定义全局函数和变量

    背景 最近我在整一个网站,介绍一些有意思的网站和实用工具的网站并且把他们收集起来,网站刚建有些不成熟希望给点意见 我用的是前端框架的vue, 但是我没有打包,直接甩到服务器上了, 不想扯了, 步骤 1 ...

  8. 再见收费的Navicat!操作所有数据库就靠它了!

    作为一名开发者,免不了要和数据库打交道,于是我们就需要一款顺手的数据库管理工具.很长一段时间里,Navicat 都是我的首选,但最近更换了一台新电脑,之前的绿色安装包找不到了. 于是就琢磨着,找一款免 ...

  9. Solution -「WF2011」「BZOJ #3963」MachineWorks

    \(\mathcal{Description}\)   Link.   给定你初始拥有的钱数 \(C\) 以及 \(N\) 台机器的属性,第 \(i\) 台有属性 \((d_i,p_i,r_i,g_i ...

  10. Linux下/目录 、/home目录 、~目录的区别

    / :根目录 ,所有目录的最顶层目录,从任何用户执行该命令都会进入同一个目录,即所有用户共享.如下图: /home:/下面的home目录,名为家目录,但是很多人叫为用户列表目录,因为/home下是这台 ...