归纳学习(Inductive Learning): 顾名思义,就是从已有训练数据中归纳出模式来,应用于新的测试数据和任务。我们常用的机器学习模式就是归纳学习。

直推学习(Transductive Learning): 也叫转导学习,指的是由当前学习的知识直接推广到指定的部分数据上。即用于训练的数据包含了测试数据,学习过程是作用在这个固定的数据上的,一旦数据发生改变,需要重新进行学习训练。

Inductive Learning 对应于meta-learning(元学习),要求从诸多给定的任务和数据中学习通用的模式,迁移到未知的任务和数据上。

Transductive Learning 对应于domain adaptation(领域自适应),给定训练的数据包含了目标域数据,要求训练一个对目标域数据有最小误差的模型。

困难负样本(Hard Negative): hard negative就是当你得到错误的预测样本时,会创建一个负样本,并把这个负样本添加到训练集中去。当重新训练你的分类器后,分类器会表现的更好,并且不会像之前那样产生多的错误的正样本。

归纳学习(Inductive Learning),直推学习(Transductive Learning),困难负样本(Hard Negative)的更多相关文章

  1. 【重磅干货整理】机器学习(Machine Learning)与深度学习(Deep Learning)资料汇总

    [重磅干货整理]机器学习(Machine Learning)与深度学习(Deep Learning)资料汇总 .

  2. 机器学习(Machine Learning)与深度学习(Deep Learning)资料汇总

    <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.D ...

  3. 【Supervised Learning】 集成学习Ensemble Learning & Boosting 算法(python实现)

    零. Introduction 1.learn over a subset of data choose the subset uniformally randomly (均匀随机地选择子集) app ...

  4. 机器学习(Machine Learning)&amp;深度学习(Deep Learning)资料

    机器学习(Machine Learning)&深度学习(Deep Learning)资料 機器學習.深度學習方面不錯的資料,轉載. 原作:https://github.com/ty4z2008 ...

  5. 主动学习——active learning

    阅读目录 1. 写在前面 2. 什么是active learning? 3. active learning的基本思想 4. active learning与半监督学习的不同 5. 参考文献   1. ...

  6. 《A Survey on Transfer Learning》迁移学习研究综述 翻译

    迁移学习研究综述 Sinno Jialin Pan and Qiang Yang,Fellow, IEEE 摘要:   在许多机器学习和数据挖掘算法中,一个重要的假设就是目前的训练数据和将来的训练数据 ...

  7. 【机器学习】转导推理——Transductive Learning

    在统计学习中,转导推理(Transductive Inference)是一种通过观察特定的训练样本,进而预测特定的测试样本的方法.另一方面,归纳推理(Induction Inference)先从训练样 ...

  8. 【深度学习Deep Learning】资料大全

    最近在学深度学习相关的东西,在网上搜集到了一些不错的资料,现在汇总一下: Free Online Books  by Yoshua Bengio, Ian Goodfellow and Aaron C ...

  9. 机器学习(Machine Learning)&深度学习(Deep Learning)资料【转】

    转自:机器学习(Machine Learning)&深度学习(Deep Learning)资料 <Brief History of Machine Learning> 介绍:这是一 ...

随机推荐

  1. Git 06 分支

    参考源 https://www.bilibili.com/video/BV1FE411P7B3?spm_id_from=333.999.0.0 版本 本文章基于 Git 2.35.1.2 概述 分支用 ...

  2. 052_末晨曦Vue技术_处理边界情况之程序化的事件侦听器

    程序化的事件侦听器 点击打开视频讲解更详细 现在,你已经知道了 $emit 的用法,它可以被 v-on 侦听,但是 Vue 实例同时在其事件接口中提供了其它的方法.我们可以: 通过 $on(event ...

  3. Java开发学习(二十六)----SpringMVC返回响应结果

    SpringMVC接收到请求和数据后,进行了一些处理,当然这个处理可以是转发给Service,Service层再调用Dao层完成的,不管怎样,处理完以后,都需要将结果告知给用户. 比如:根据用户ID查 ...

  4. 第三十九篇:Vue3 watch(ref和reactive的监视)

    好家伙, 1.vue2中的watch是调用配置项,(只能写一个) vue3中的watch是一个函数(可以写很多个) 2.watch一些用法: 这里是定义的数据 set up(){ let sum =r ...

  5. 校园网跨网段共享文件Samba+SSH

    Introduction This tutorial contains screenshots for the English version of Windows 10. Separate inst ...

  6. [Python]-numpy模块-机器学习Python入门《Python机器学习手册》-01-向量、矩阵和数组

    <Python机器学习手册--从数据预处理到深度学习> 这本书类似于工具书或者字典,对于python具体代码的调用和使用场景写的很清楚,感觉虽然是工具书,但是对照着做一遍应该可以对机器学习 ...

  7. 2021年1月-第02阶段-前端基础-HTML+CSS阶段-Day01

    HTML5 第一天 一.什么是 HTML5 1.HTML5 的概念与定义 定义:HTML5 定义了 HTML 标准的最新版本,是对 HTML 的第五次重大修改,号称下一代的 HTML 两个概念: 是一 ...

  8. js之页面列表加载常用方法总结

    导语:最近由于一些事情需要处理,所以没来得及写技术总结了.今天终于可以坐下来好好的梳理一下脉络,说一下那个在日常前端开发过程中,常用到的页面列表加载的方法总结.这里介绍三种方法,分别是分页加载.按钮加 ...

  9. 怎样编写正确、高效的 Dockerfile

    基础镜像 FROM 基础镜像 基础镜像的选择非常关键: 如果关注的是镜像的安全和大小,那么一般会选择 Alpine: 如果关注的是应用的运行稳定性,那么可能会选择 Ubuntu.Debian.Cent ...

  10. Markdowm基础语法的使用(typora)

    Mackdown学习 一级标题:一个#加空格 回车 二级标题:两个#加空格 回车 以此类推... 一级标题(Ctrl+1) 二级标题(Ctrl+2) 三级标题(Ctrl+3) 四级标题(Ctrl+4) ...