Memory and Scores
Memory and Scores
题目链接:http://codeforces.com/contest/712/problem/D
dp
因为每轮Memory和Lexa能取的都在[-k,k],也就是说每轮两人分数的变化量在[-2k,2k];
故可以定义状态:dp[times][diff]为第times次Memory和Lexa的分数差为diff的方案数.
而dp[times][diff]可以从dp[times-1][diff-2k]到dp[times-1][diff+2k]转移而来;
又因为变化量为-2k时的方案数为1(-k,k),
变化量为-2k+1时的方案数为2(-k,k-1;-k+1,k),
变化量为-2k+2时的方案数为3(-k,k-2;-k+1,k-1;-k+2,k),
...,
变化量为-2k+m时的方案数为m+1,
...,
变化量为0时的方案数为2k+1,
...,
变化量为2k-m时的方案数为m+1,
...,
变化量为2k-1时的方案数为2,
变化量为2k时的方案数为1.
所以状态转移方程为:dp[times][diff]=dp[times-1][diff-2k]+2*dp[times-1][diff-2k+1]+3*dp[times-1][diff-2k+2]+...+(m+1)*dp[times-1][diff-2k+m]+...+2*dp[times-1][diff+2k-1]+dp[times-1][diff+2k];
这样的话,时间复杂度为O(k2t2),代码如下:
#include<iostream>
#include<cmath>
#define M 1000000007LL
#define TIME 105
#define DIFF 300000
#define BASE 150000
using namespace std;
typedef long long LL;
LL a,b,k,t,ans;
LL dp[TIME][DIFF];
int main(void){
cin>>a>>b>>k>>t;
dp[][a-b+BASE]=;
LL upper=a-b+BASE+*k*t;
LL lower=a-b+BASE-*k*t;
for(LL times=;times<=t;++times){
for(LL diff=lower;diff<=upper;diff++){
for(LL m=;m<=*k;m++){
LL add=-*k+m;
if(diff+add>=lower){
if(add)dp[times][diff]+=(dp[times-][diff+add]+dp[times-][diff-add])*(m+);
else dp[times][diff]+=dp[times-][diff]*(m+);
dp[times][diff]%=M;
}
}
}
}
for(int i=BASE+;i<=upper;++i)
ans=(ans+dp[t][i])%M;
cout<<ans<<endl;
}
很显然,这会T,所以必须做出优化。
注意到:
dp[times][diff]是在dp[times][diff-1]的基础上前半段各个项减一,后半段各个项加一得到的,所以可以维护一个前缀和数组pre[i],那么
dp[times][diff]=dp[times][diff-1]+(pre[diff+2k]-pre[diff-1])-(pre[diff-1]-pre[(diff-1)-2k-1])
可以在O(1)的时间内完成,优化后的代码时间复杂度为O(kt2),代码如下:
#include<iostream>
#include<cmath>
#define M 1000000007LL
#define TIME 105
#define DIFF 500000
#define BASE 250000
using namespace std;
typedef long long LL;
LL a,b,k,t,ans;
LL dp[TIME][DIFF];
LL pre[DIFF];
int main(void){
cin>>a>>b>>k>>t;
dp[][a-b+BASE]=;
LL upper=a-b+BASE+*k*t;
LL lower=a-b+BASE-*k*t;
for(LL times=;times<=t;++times){
for(LL diff=lower;diff<=upper;diff++)
pre[diff]=pre[diff-]+dp[times-][diff],pre[diff]%=M;
for(LL m=;m<=*k;m++){
LL add=-*k+m;
if(add)dp[times][lower]
+=(dp[times-][lower+add]+dp[times-][lower-add])*(m+);
else dp[times][lower]+=dp[times-][lower]*(m+);
dp[times][lower]%=M;
}
for(LL diff=lower+;diff<=upper;diff++){
dp[times][diff]=dp[times][diff-]
+(pre[min(upper,diff+*k)]-pre[diff-])
-(pre[diff-]-pre[max(lower,diff--*k)-]);
dp[times][diff]=(dp[times][diff]+M)%M;
//记得+M,减法模运算可能会出现负数
}
}
for(int i=BASE+;i<=upper;++i)
ans=(ans+dp[t][i])%M;
cout<<ans<<endl;
}
这样的代码仍然可以优化:
1.可以用滚动数组来优化空间复杂度,从O(kt2)降低到O(kt),太懒没写╮(╯▽╰)╭;
2.可以用快速傅里叶变换FFT优化时间复杂度,从O(kt2)继续降到O(kt lg(kt)),没学还不会写╮(╯▽╰)╭
//昨天去面试微软俱乐部被嘲讽=。= 定个目标吧,这学期div2稳定4题怎么样?
Memory and Scores的更多相关文章
- Codeforces Round #370 (Div. 2) D. Memory and Scores DP
D. Memory and Scores Memory and his friend Lexa are competing to get higher score in one popular c ...
- Codeforces Round #370 (Div. 2) D. Memory and Scores 动态规划
D. Memory and Scores 题目连接: http://codeforces.com/contest/712/problem/D Description Memory and his fr ...
- [Codeforces712D] Memory and Scores(DP+前缀和优化)(不用单调队列)
[Codeforces712D] Memory and Scores(DP+前缀和优化)(不用单调队列) 题面 两个人玩游戏,共进行t轮,每人每轮从[-k,k]中选出一个数字,将其加到自己的总分中.已 ...
- 【26.87%】【codeforces 712D】Memory and Scores
time limit per test2 seconds memory limit per test512 megabytes inputstandard input outputstandard o ...
- [CodeForces - 712D]Memory and Scores (DP 或者 生成函数)
题目大意: 两个人玩取数游戏,第一个人分数一开始是a,第二个分数一开始是b,接下来t轮,每轮两人都选择一个[-k,k]范围内的整数,加到自己的分数里,求有多少种情况使得t轮结束后a的分数比b高. ( ...
- Codeforces 712 D. Memory and Scores (DP+滚动数组+前缀和优化)
题目链接:http://codeforces.com/contest/712/problem/D A初始有一个分数a,B初始有一个分数b,有t轮比赛,每次比赛都可以取[-k, k]之间的数,问你最后A ...
- CodeForces 712D Memory and Scores
$dp$,前缀和. 记$dp[i][j]$表示$i$轮结束之后,两人差值为$j$的方案数. 转移很容易想到,但是转移的复杂度是$O(2*k)$的,需要优化,观察一下可以发现可以用过前缀和来优化. 我把 ...
- CF370 D Memory and Scores
dp题 并运用了前缀和 我看题目提示中有fft 我想了下感觉复杂度不过关还是未解 #include<bits/stdc++.h> using namespace std; typedef ...
- CF712D Memory and Scores
题目分析 实际上两个人轮流取十分鸡肋,可以看作一个人取2t次. 考虑生成函数. 为了方便,我们对取的数向右偏移k位. 取2t次的生成函数为: \[ F(x)=(\sum_{i=0}^{2k}x_i)^ ...
随机推荐
- C语言之scarf函数
一 基本用法 scanf函数:接收用户的输入 语法: scanf("格式化控制符",地址列表); 例: int num; scanf("%d",&num ...
- 基本的SQL语句
一些常用的SQL语句大全参考:http://www.cnblogs.com/acpe/p/4970765.html 这篇博文整理的比较全,我摘抄一些基本常用的. 创建数据库 CREATE DATABA ...
- Debian 8 安装BtSync
声明,此方法是Btsync的官网resilio提供的方法 传送门:https://help.getsync.com/hc/en-us/articles/206178924 第一,在如下文件中添加: 1 ...
- 51nod1279(二分)
题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1279 题意:中文题诶- 思路: 就想短板效应一样,很显然决定 ...
- SQL注入(一) - 入门篇
什么是SQL注入 可能大家还不是对SQL注入这个概念不是很清楚,简单地说,SQL注入就是攻击者通过正常的WEB页面,把自己SQL代码传入到应用程序中,从而通过执行非程序员预期的SQL代码,达到窃取数据 ...
- mysql 5.5 mysqldump备份原理
开启general_log日志,获取mysqldump执行语句 show VARIABLES like 'general_log%' set GLOBAL general_log=on 执行备份命令 ...
- CentOS 6.5安装之后的网络配置
CentOS 6.5安装之后的网络配置 1.查看IP地址,得到只有一个回环地址 127.0.0.1 2.进行网络测试,现在来测试下,看能不能ping通外网www.baidu.com 下面的是,关于pi ...
- maven插件报错之解决
maven插件报错之解决 用m2eclipse创建Maven项目时报错 maveneclipsebuilddependenciesauthorizationplugins 用m2eclipse创建 ...
- 走迷宫 (nyoj 306)
学习自此博客题解 二分搜索+深搜.二分枚举最小差距值(路径上的最大值与最小值的差距),枚举的最小值为abs(a[1][1]-a[n][n]),最大值为题目给出的120.搜索时代入这个最小差距值,若存在 ...
- Chapter 21_3 模式
很多地方都会看到各种匹配模式,每次接触这些函数,颇使人望文生畏. 今天就来好好面对它.认识它.了解它.最后战胜它. 匹配模式都是用一串常规的字符串来描述,最主要的是理解这些字符串的语法及含义(即它能匹 ...