Description

During winter, the most hungry and severe time, Holedox sleeps in its lair. When spring comes, Holedox wakes up, moves to the exit of its lair, comes out, and begins its new life. 

Holedox is a special snake, but its body is not very long. Its lair is like a maze and can be imagined as a rectangle with n*m squares. Each square is either a stone or a vacant place, and only vacant places allow Holedox to move in. Using ordered pair of row
and column number of the lair, the square of exit located at (1,1). 



Holedox's body, whose length is L, can be represented block by block. And let B1(r1,c1) B2(r2,c2) .. BL(rL,cL) denote its L length body, where Bi is adjacent to Bi+1 in the lair for 1 <= i <=L-1, and B1 is its head, BL is its tail. 



To move in the lair, Holedox chooses an adjacent vacant square of its head, which is neither a stone nor occupied by its body. Then it moves the head into the vacant square, and at the same time, each other block of its body is moved into the square occupied
by the corresponding previous block. 



For example, in the Figure 2, at the beginning the body of Holedox can be represented as B1(4,1) B2(4,2) B3(3,2)B4(3,1). During the next step, observing that B1'(5,1) is the only square that the head can be moved into, Holedox moves its head into B1'(5,1),
then moves B2 into B1, B3 into B2, and B4 into B3. Thus after one step, the body of Holedox locates in B1(5,1)B2(4,1)B3(4,2) B4(3,2) (see the Figure 3). 



Given the map of the lair and the original location of each block of Holedox's body, your task is to write a program to tell the minimal number of steps that Holedox has to take to move its head to reach the square of exit (1,1). 

Input

The input consists of several test cases. The first line of each case contains three integers n, m (1<=n, m<=20) and L (2<=L<=8), representing the number of rows in the lair, the number of columns in the lair and the body length of Holedox, respectively. The
next L lines contain a pair of row and column number each, indicating the original position of each block of Holedox's body, from B1(r1,c1) to BL(rL,cL) orderly, where 1<=ri<=n, and 1<=ci<=m,1<=i<=L. The next line contains an integer K, representing the number
of squares of stones in the lair. The following K lines contain a pair of row and column number each, indicating the location of each square of stone. Then a blank line follows to separate the cases. 



The input is terminated by a line with three zeros. 



Note: Bi is always adjacent to Bi+1 (1<=i<=L-1) and exit square (1,1) will never be a stone. 

Output

For each test case output one line containing the test case number followed by the minimal number of steps Holedox has to take. "-1" means no solution for that case.

Sample Input

5 6 4
4 1
4 2
3 2
3 1
3
2 3
3 3
3 4 4 4 4
2 3
1 3
1 4
2 4
4 2 1
2 2
3 4
4 2 0 0 0

Sample Output

Case 1: 9
Case 2: -1

Hint

In the above sample case, the head of Holedox can follows (4,1)->(5,1)->(5,2)->(5,3)->(4,3)->(4,2)->(4,1)->(3,1)->(2,1)->(1,1) to reach the square of exit with minimal number of step, which is nine. 

Source

思路:从头部開始想尾部走,不同方向代表不同的值,就得到蛇的状态,然后就是普通的BFS,还要注意不能咬到自己,首尾相连也不行。

#include <stdio.h>

struct S{
int step,x[9],y[9],head;
}que[1000000]; bool vis[20][20][16384];
int mp[20][20],nxt[4][2]={{1,0},{0,-1},{0,1},{-1,0}},mi[8]={1,4,16,64,156,1024,4096,16384}; int main()
{
int n,m,l,i,j,k,x,y,head,temp,lx,ly,tl,valx,valy,casenum=1,top,bottom; while(~scanf("%d%d%d",&n,&m,&l) && n)
{
for(i=0;i<l;i++)
{
scanf("%d%d",&x,&y); que[0].x[i]=x-1;
que[0].y[i]=y-1;
} for(i=0;i<n;i++) for(j=0;j<m;j++) mp[i][j]=1;
for(i=0;i<n;i++) for(j=0;j<m;j++) for(k=0;k<mi[l-1];k++) vis[i][j][k]=0; scanf("%d",&k); while(k--)
{
scanf("%d%d",&x,&y); mp[x-1][y-1]=0;
} que[0].step=0;
que[0].head=0; top=0;
bottom=1; while(top<bottom)
{
if(!que[top].x[que[top].head] && !que[top].y[que[top].head])
{
printf("Case %d: %d\n",casenum++,que[top].step); break;
} head=que[top].head-1; if(head==-1) head=l; que[top].step++; for(i=0;i<4;i++)
{
x=que[top].x[head]=que[top].x[que[top].head]+nxt[i][0];
y=que[top].y[head]=que[top].y[que[top].head]+nxt[i][1]; if(x>=0 && x<n && y>=0 && y<m && mp[x][y])
{
temp=0; lx=x;
ly=y; tl=0; for(j=que[top].head;tl<l;j++)
{
if(j==l+1) j=0; if(que[top].x[j]==x && que[top].y[j]==y) break;//假设会咬到自己 if(tl<l-1)//计算状态
{
valx=lx-que[top].x[j];
valy=ly-que[top].y[j]; if(valx==0 && valy==1) temp=temp<<2;
else if(valx==1 && valy==0) temp=temp<<2|1;
else if(valx==-1 && valy==0) temp=temp<<2|2;
else if(valx==0 && valy==-1) temp=temp<<2|3; lx=que[top].x[j];
ly=que[top].y[j];
} tl++;
} if(tl==l && !vis[x][y][temp])//假设不会咬到自己而且该状态没有訪问过
{
vis[x][y][temp]=1; que[top].head--; if(que[top].head==-1) que[top].head=l; que[top].x[head]=x;
que[top].y[head]=y; que[bottom++]=que[top]; que[top].head++; if(que[top].head==l+1) que[top].head=0;
}
}
} top++;
} if(top==bottom) printf("Case %d: -1\n",casenum++);
}
}

POJ-1324-Holedox Moving(BFS)的更多相关文章

  1. POJ 1324 Holedox Moving (状压BFS)

    POJ 1324 Holedox Moving (状压BFS) Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 18091 Acc ...

  2. poj 1324 Holedox Moving

    poj 1324 Holedox Moving 题目地址: http://poj.org/problem?id=1324 题意: 给出一个矩阵中,一条贪吃蛇,占据L长度的格子, 另外有些格子是石头, ...

  3. POJ - 1324 Holedox Moving (状态压缩+BFS/A*)

    题目链接 有一个n*m(1<=n,m<=20)的网格图,图中有k堵墙和有一条长度为L(L<=8)的蛇,蛇在移动的过程中不能碰到自己的身体.求蛇移动到点(1,1)所需的最小步数. 显然 ...

  4. POJ 1324 Holedox Moving 搜索

    题目地址: http://poj.org/problem?id=1324 优先队列---A*的估价函数不能为蛇头到(1,1)的距离,这样会出错. 看了discuss,有大神说这题A*的估价函数为BFS ...

  5. poj 1324 状态压缩+bfs

    http://poj.org/problem?id=1324 Holedox Moving Time Limit: 5000MS   Memory Limit: 65536K Total Submis ...

  6. poj1324 Holedox Moving

    Holedox Moving Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 16980   Accepted: 4039 D ...

  7. poj 3414 Pots 【BFS+记录路径 】

    //yy:昨天看着这题突然有点懵,不知道怎么记录路径,然后交给房教了,,,然后默默去写另一个bfs,想清楚思路后花了半小时写了120+行的代码然后出现奇葩的CE,看完FAQ改了之后又WA了.然后第一次 ...

  8. UVALive 2520 Holedox Moving(BFS+状态压缩)

    这个题目在比赛的时候我们是没有做出来的,但是听到他们说进制哈希的时候,感觉真的是挺高端的,于是赛后开始补题,本着我的习惯在看题解之前自己再试着写一遍,我当时存储状态的方法是string + map,我 ...

  9. POJ 1324(BFS + 状态压缩)

    题意:给你一条蛇,要求一以最少的步数走到1,1 思路: 最开始一直没想到应该怎样保存状态,后来发现别人用二进制保存蛇的状态,即每两个节点之间的方向和头节点,二进制最多14位(感觉状态保存都能扯到二进制 ...

  10. poj 3026 Borg Maze (BFS + Prim)

    http://poj.org/problem?id=3026 Borg Maze Time Limit:1000MS     Memory Limit:65536KB     64bit IO For ...

随机推荐

  1. 【iOS】网页中调用JS与JS注入

    非常多应用为了节约成本,做出同一时候在Android与iOS上都能使用的界面,这时就要使用WebView来做.Android和IOS上都有WebView,做起来非常省事.当然这时就要考虑怎样在Andr ...

  2. poj 2054 Color a Tree(贪婪)

    # include <stdio.h> # include <algorithm> # include <string.h> using namespace std ...

  3. 跨平台编程中的宏定义(__LINE__和__DATE__极其有用)

    要用师兄的计算机算东西,无赖那上面是WINDOWS的系统,为了写出能够跨平台的代码,需要在代码中用到宏来选择编译.一种方法是自己在Makefile里面定义好该平台对应的宏.实际上,编译器基本上都会有一 ...

  4. delphi json(CDS包含了Delta数据包)

    在delphi中,数据集是最常用数据存取方式.因此,必须建立JSON与TDataSet之间的互转关系,实现数据之间通讯与转换.值得注意的是,这只是普通的TDataset与JSON之间转换,由于CDS包 ...

  5. 基于unity3d和leap motion的拼图游戏

    近期用unity3d引擎做了一个拼图游戏,会分几次写完,以此作为总结. 本文基本查找了网上能查到的全部资料作为參考.也算是大家节省了时间. 眼下仅仅完毕了拼图部分,leap motion手势控制部分会 ...

  6. Linear Regression(线性回归)(二)—正规方程(normal equations)

    (整理自AndrewNG的课件,转载请注明.整理者:华科小涛@http://www.cnblogs.com/hust-ghtao/) 在上篇博客中,我们提出了线性回归的概念,给出了一种使代价函数最小的 ...

  7. jyphon 环境变量配置

    Jyphon 是基于java平台python 的一种实现 官网: http://www.jython.org/ 可以从官网下载 jyphon 安装 下载 jython Installer ,下载之后是 ...

  8. Minor GC、Major GC和Full GC之间的区别(转)

    在 Plumbr 从事 GC 暂停检测相关功能的工作时,我被迫用自己的方式,通过大量文章.书籍和演讲来介绍我所做的工作.在整个过程中,经常对 Minor.Major.和 Full GC 事件的使用感到 ...

  9. Transformations 方块转换

    题目是中文题,就不做什么解释了,纯模拟题,主要要搞清楚这几种装换方式下标的变化: 第一种:顺时针旋转90度: c[j][n-i+1]=a[i][j]; 第二种:旋转180度: c[n-i+1][n-j ...

  10. 14.1.2 Checking InnoDB Availability 检查InnoDB 可用性:

    14.1.2 Checking InnoDB Availability 检查InnoDB 可用性: 确认你的server 是否支持InnoDB,使用 SHOW ENGINES 语句.(默认MySQL的 ...