作为一个学微电子专业的IC learner,这个学期也有一门课:《微电子器件》,今天我就来聊聊基本的器件:CMOS器件及其电路。在后面会聊聊锁存器和触发器。

  今天的主要内容如下所示:

    ·MOS晶体管结构与工作原理简述

    ·CMOS单元电路与版图

    ·CMOS门电路

    ·CMOS的功耗表示

老实说,CMOS比较偏微电子器件,微电子器件还真难...这里我就说一些做数字设计或许要了解的东西吧(以后要是必要,会补充)。

1、MOS晶体管结构与工作原理简述

  我们或多或少知道,晶体管在数字电路中的主要作用就是一个电子开关,通过电压或者电流,控制这个“开关”开还是关。晶体管大概有两种分类:一种是双极性晶体管(BJT,bipolar  junction  transistor),另外一种是金属-氧化物-半导体场效应晶体管(MOSFET或者MOS,metal-oxide-semiconductor  field effect transistor)。我们这里主要来聊聊MOS了,那个BJT在现在数字IC设计中已经不是主流工艺了。

  ①MOS晶体管分为PMOS和NMOS,是哪一类MOS取决于衬底掺杂浓度。至于是怎么形成的,这太复杂了,简单的三言两语说不清楚,这里干脆就不说了,我们直接来看他们的截面图和简单地讲解它们的工作原理好了(以下均以NMOS为例)。

NMOS晶体管的横截面结构如下所示:

                    

  最底层是硅晶元圆衬底(substrate)(Body Si那里),最顶上是导电的栅极(gate),中间是二氧化硅构成的绝缘层。在过去栅极是由金属构成的,因此叫做金属-氧化物-半导体,现在的栅极使用的是多晶硅(poly)。MOS结构中,金属(多晶硅)与半导体衬底之间的二氧化硅会形成一个电容。

  好吧,上面那一段看不懂也没关系,也不重要,需要你记住的是,上述的NMOS晶体管中,衬底是P型的,衬底上有两个n型的掺杂区域分别称为源极(Source)和漏极(Drain)(其实你把左边定义为漏而右边定义为源也没有问题,因为这个时候这个器件是对称的,在连接电源和地之后,S和D才真正确认),中间最上面的称为栅极(Gate,这就是NMOS的三个电极了。下面来说一下他们怎么工作。

  前面我们说了,晶体管的作用就是大致就是一个开关,在电流或者电压的控制下进行开和关,对于NMOS晶体管,我们现在给它加上电压,让它开始工作:

                                

如上左图所示,加上电压后,所谓的源极,就相当于电子的源头;所谓的漏极,就相当于漏出电子的开口;而中间的栅极,就像控制开关一样:一方面通过控制在栅极施加的电平电压,使源漏之间出现沟道,电子通过沟道从源极流向漏极,电流的方向也就是从漏到源了,从而进行导电,也就是“开关”打开的的时候(由于是形成的N沟道,也就是电子导电,因此成为N型CMOS)。另一方面再通过控制在栅极施加电平电压,让沟道关断,因此就源漏之间就关断了,也就是“开关”关断的时候。上面就是NMOS的结构和工作流程了。(PMOS的工作流程恰好相反:通过控制在栅极施加的低电平电压,进行打开,而通过控制在栅极施加高电平电压,让沟道关断。)

注意:栅极的电压达到一定数值时,沟道才会形成,沟道形成时的电压称为阈值电压(Vth)

  ②下面我们来看一下I-V特性曲线:

               

   在前面我们知道,对于NMOS,源极(S)是接地的,漏极(D)是接数字电源的,在工作的时候,一般Vds是不变的,然后根据栅极(G)上的电压决定沟道是否导通。工作的时候,Vg的值(也就是输入信号的电压值)是一个定值,要么高电平(可能有波动),要么是低电平,从这里我们也知道NMOS工作的时候,是有电流从电源(VDD)流到地(GND)的(也就是从D流到S的),在电源电压不变的时候,这个电流随着栅极上的电压增大而增大。我们数字电路就是要它工作在饱和区。

    ③接着我们看看MOS的内部自个形成的电容(寄生电容),如下图所示:

                      

   主要分为:

    (1)栅和沟道之间的氧化层电容C1; 

    (2)衬底和沟道之间的耗尽层电容C2; 

    (3)多晶硅栅与源和漏的交叠而产生的电容C3 和C4; 

    (4)源/漏区与衬底之间的结电容C5与C6。

  好吧,其实这些个MOS这个电容我们看看就好了,毕竟我们不是做器件的。

2、CMOS单元电路与版图

  在现在工艺中,我们主要使用的是成为CMOS(互补型半导体,Complementary MOS)的工艺,这种工艺主要就是把PMOS和NMOS这两类晶体管构成一个单元,称为CMOS单元或者反相器单元,其结构把PMOS和NMOS同时集成在一个晶元上然后栅极相连,漏极相连,下面是它的结构图(关于电路符号和功能将在后面讲):

              

  在上图中,左边是NMOS,右边是PMOS。A是共连栅极输入,Y是共连漏极输出,VDD连接PMOS的源极,GND连接GND。

下面电路符号图了,上面的那个CMOS反相器对于的电路符号图如下所示:

                            

  现在我们就来分析一下这个CMOS反相器的工作原理来说明这个为什么CMOS工艺是主流吧:

  A当输入信号A=1时,PMOS关断,NMOS打开,输出信号Y的电压相当于GND的电压,也就是Y=0;在这个过程中,从VDD到GND这一个供电回路都没有导通,因此理论不存在电流从VDD流到GND,因此功耗为0.

  B当输入信号A=0时,PMOS打开,而NMOS关闭,输出信号Y=VDD=1,但是从VDD到GND这一个供电回路也没有导通,因此理论上也不存在电流从VDD流到GND,因此功耗也为0。

  C因此可以得出,理论上反相器进行传输信号时,没有功耗(好吧,我们应该这样说:功耗极其地低),这就是为什么使用CMOS的工艺的原因。

  下面我们来看一下CMOS单元的版图:

                  

  左边是CMOS的电路符号,右边是版图(这个版图先凑合着看),下面来说一下这个版图吧:

  首先是从下往上看,金属(蓝色)连接到数字地(Vss)上面;白色背景红色虚线边框的P阱区域是为说明,下面的绿色掺杂区域形成的是NMOS,上面绿色掺杂区域形成的是PMOS;

  然后   绿色的掺杂区域  分布在  红色的多晶硅附近,然后多晶硅连在一起(也就是把PMOS和NMOS的栅极连在一起),然后通过金属引出(那个X表示通孔)为输入Vi。

  然后下面的NMOS的源极通过通孔跟金属连在一起(绿色跟蓝色通过X连在一起);NMOS和PMOS的漏极通过通孔连接到同一块金属上面然后当做输出。

  PMOS的源极通过通孔连接到金属然后连接到了数字电源上。

  更加抽象(好看一点)的图如下所示:

                  

  版图的基本知识就到这好了,更详细的知识还是查看更专业的书籍吧。

3、CMOS门电路

  ①CMOS非门:上面的一个CMOS单元的功能就是非门的功能了,因此CMOS非门也就是这个CMOS的单元,也称为反相器。其电路结构就是反相器的电路结构。

  ②(二输入)CMOS与非门(NAND):

直接上图吧,CMOS与非门的电路符号结构如下所示:

              

                  

    (PMOS的电路符号栅极处本来应该有个小圈圈,表示低电平有效的)

③(二输入)CMOS或非门(NOR)的电路符号和工作原理如下所示:

                 

      (PMOS的电路符号栅极处本来应该有个小圈圈,表示低电平有效的)

  数字逻辑电路都可以由上面的三种电路化简构成,也就是说一个电路可以由NAND或者NOR电路构成,我们来看看他们的特点来推导数字CMOS电路的特点。

容易知道(反正我们就当做结论好了):

  反相逻辑门的通用结构如下所示:

                   

    此外我们也注意到,使用到功能的时候,NMOS网络是联的;使用功能时,NMOS网络是并联的。因此可以这么记忆:要NOMS都一起,才能一起(与),只要NMOS其中一个就可以(或),与还是或,可以根据NMOS的串并结构判断。

  然后设计多少个输入的NXXX门,就把多少个NMOS串/并联起来,然后PMOS就是并/串就可以了。

4、CMOS的功耗表示

  功耗是单位时间内消耗的能量,在数字系统中的功耗主要包括静态功耗和动态功耗,我们将从CMOS电路角度聊聊静态功耗和动态功耗。

  CMOS的静态功耗:当CMOS不翻转/不工作时的功耗。在CMOS都不工作时,也就是晶体管都处于截止状态的时候,从VDD到GND并不是完全没有电流流过的,还是有些微电流从电源流到地,这个静态电流Idd称为电源和地之间的漏电流,跟器件有关(至于漏电流是怎么引起的,这里就不再阐述了)。初中的时候,我们就学过P=UI,因此静态功耗就可以这样表示 :

                  Ps = Idd*Vdd.

  CMOS的动态功耗是信号在0和1变化之间,电容充放电所消耗的功耗。我们知道,不仅仅CMOS器件有寄生电容,导线间也有电容。将电容C充电到电压Vdd所需要的能量CVdd^2。如果电容每秒变换f次(也就是电容的切换频率为f,在一秒内,电容充电f/2次,放电f/2次),由于放电不需要从电源那里获取功耗,因此动态功耗就可以这样表示:

        Pd = 1/2* C*Vdd^2*f  即:  

PS:上面主要是列举了一些主要的功耗,比如动态功耗中除了翻转时电容消耗功耗外,还有在栅极信号翻转的时候PMOS和NMOS同时导通引起的短路功耗。

这里不一一陈述,主要是考虑上面的那两种功耗。也许后面记载低功耗设计的时候会详细说明一下。

本文中的图片主要来自Google 网络,部分来自:《数字IC系统设计》

从CMOS到触发器(一)的更多相关文章

  1. 从CMOS到触发器(二)

    PS:可以转载,转载请标明出处:http://www.cnblogs.com/IClearner/ 前面说了CMOS器件,现在就接着来聊聊锁存器跟触发器吧,下面是这次博文要介绍的主要内容: ·双稳态器 ...

  2. TTL和CMOS

    reprint from:http://blog.csdn.net/hemeinvyiqiluoben/article/details/9253249 TTL和COMS电平匹配以及电平转换的方法 一. ...

  3. TTL电平和CMOS电平总结

    TTL电平和CMOS电平总结 1,TTL电平:          输出高电平>2.4V,输出低电平<0.4V.在室温下,一般输出高电平是3.5V,输出低电平是0.2V.最小输入高电平和低电 ...

  4. mysql的 深度使用 - 游标 , 定时器, 触发器 的使用 ?

    游标 叶叫做 光标; 只能使用在 mysql的 存储过程 或函数中! 游标的概念? 为什么要使用 游标? 什么叫 定时器, 就是事件 event! 是在 mysql 5.0以上的版本中, 才能使用支持 ...

  5. IC设计:CMOS器件及其电路

    作为一个微电子专业的IC learner,这个学期也有一门课:<微电子器件>,今天我就来聊聊基本的器件:CMOS器件及其电路.在后面会聊聊锁存器和触发器. ·MOS晶体管结构与工作原理简述 ...

  6. pt-online-schema-change中update触发器的bug

    pt-online-schema-change在对表进行表结构变更时,会创建三个触发器. 如下文测试案例中的t2表,表结构如下: mysql> show create table t2\G . ...

  7. MySQL主从环境下存储过程,函数,触发器,事件的复制情况

    下面,主要是验证在MySQL主从复制环境下,存储过程,函数,触发器,事件的复制情况,这些确实会让人混淆. 首先,创建一张测试表 mysql),age int); Query OK, rows affe ...

  8. MySQL 系列(三)你不知道的 视图、触发器、存储过程、函数、事务、索引、语句

    第一篇:MySQL 系列(一) 生产标准线上环境安装配置案例及棘手问题解决 第二篇:MySQL 系列(二) 你不知道的数据库操作 第三篇:MySQL 系列(三)你不知道的 视图.触发器.存储过程.函数 ...

  9. MSSQL 事务,视图,索引,存储过程,触发器

    事务 事务是一种机制.是一种操作序列,它包含了一组数据库操作命令,这组命令要么全部执行,要么全部不执行. 在数据库系统上执行并发操作时事务是作为最小的控制单元来使用的.这特别适用于多用户同时操作的数据 ...

随机推荐

  1. js获取前之前或之后的日期

    function fun_date(aa){ var date1 = new Date(), time1=date1.getFullYear()+"-"+(date1.getMon ...

  2. hisi出的H264码流结构

    hisi出的H264码流结构: IDR帧结构如下: 开始码 + nalu + I帧    +    开始码 + nalu + SPS    +     开始码 + nalu + PPS    +    ...

  3. HTML CSS基础(三)

    3种列表:有序列表.无序列表和定义列表 表1 3种列表记忆 标签 语义 说明 ol ordered list 有序列表 ul unordered list 无序列表 dl definition lis ...

  4. nginx代理tomcat后,tomcat获取真实(非proxy,非别名)nginx服务端ip端口的解决方案

    nginx代理tomcat后,tomcat获取服务端ip端口的解决方案 1.注意修改nginx配置代理,标红地方 #user nginx; worker_processes ; error_log l ...

  5. 电商网站垮IDC数据备份,MySql主从同步,图片及其它数据文件的同步

    原文网址:http://www.bzfshop.net/article/180.html 对一个电子商务网站而言,最宝贵的资源就是数据.服务器是很廉价的东西,即使烧了好几个也问题不大,但是用户数据如果 ...

  6. iconfont.cn阿里巴巴矢量图下载字体图标实战

    1.阿里巴巴矢量图网址:www.iconfont.cn 2.然后用新浪微博账号登录 3.输入要查找的图标相应的关键字,回车 4.滑过要找的图标,点击购物车,让图标存储到暂存架中 5.点击暂存架,存储为 ...

  7. MySQL主从同步校验与重新同步

    主从复制环境中,可能有种种原因导致主.从库数据不一致的情况,主从一致性也一直是DBA需要关注的问题,校验MySQL的主从一致性一般有多种工具,诸如MySQL自带的checksum.mysqldiff. ...

  8. HTML5 Canvas、内联 SVG、Canvas vs. SVG

    canvas 元素用于在网页上绘制图形. 什么是 Canvas? HTML5 的 canvas 元素使用 JavaScript 在网页上绘制图像. 画布是一个矩形区域,您可以控制其每一像素. canv ...

  9. 在ASP.NET MVC中使用 Bootstrap table插件

    Bootstrap table: http://bootstrap-table.wenzhixin.net.cn/zh-cn/getting-started/ 1. 控制器代码: using Syst ...

  10. MVC下form表单一次上传多种类型的图片(每种类型的图片可以上传多张)

    form表单一次上传多种类型的图片(每种类型的图片可以上传多张) controller中的action方法 public ActionResult UploadImage( )        { in ...