SVD在推荐系统中的应用
一、奇异值分解SVD
1.SVD原理
SVD将矩阵分为三个矩阵的乘积,公式:
中间矩阵∑为对角阵,对角元素值为Data矩阵特征值λi,且已经从大到小排序,即使去掉特征值小的那些特征,依然可以很好地重构出原始矩阵。如下图:其中阴影部分代表去掉小特征值,重构时的三个矩阵。
如果m代表商品个数,n代表用户个数,则U矩阵每行代表商品属性,现在通过降维U矩阵(取阴影部分)后,每个商品的属性可以用更低的维度表示(假设k维)。这样当新来一个用户的商品推荐向量X,则可以根据公式X*U1*inv(S1)得到一个k维的向量,然后在V’中寻找最相似的的那个用户(相似度计算可用余弦公式),根据这个用户的评分来推荐(主要是推荐新用户未打分的那些商品)。
另外关于SVD分解后每个矩阵的实际含义可以参考google吴军的数学之美一书(吴军解释UV两个矩阵好像弄反了?)或者参考machine learning in action其中的svd章节。
2.SVD应用
SVD是一种降维工具,可以利用SVD来逼近矩阵并从中提取重要特征,保留80%~90%的能量就可以得到重要特征并去掉噪声。
SVD应用:
隐形语义索引、信息检索;
推荐引擎;
图像压缩;
matlab中调用SVD库函数:已知矩阵A=[…],则[U, S, V] = svd(A)就可以输出三个矩阵U, S, V分别是多少。
3.性能
优点:简化数据,去除噪声,提高算法结果
缺点:数据转换难以理解
数据类型:数值型数据
二、具体例子
线性代数相关知识:
任意一个M*N的矩阵A(M行*N列,M>N),可以被写成三个矩阵的乘机:
1.U:(M行M列的列正交矩阵)
2.S:(M*N的对角线矩阵,矩阵元素非负)
3.V:(N*N的正交矩阵的倒置)
即A=U*S*V‘(注意矩阵V需要倒置)
直观地说:
假设我们有一个矩阵,该矩阵每一列代表一个user,每一行代表一个item。
如上图,ben,tom....代表user,season n代表item。
矩阵值代表评分(0代表未评分):
如 ben对season1评分为5,tom对season1 评分为5,tom对season2未评分。
机器学习和信息检索:
机器学习的一个最根本也是最有趣的特性是数据压缩概念的相关性。
如果我们能够从数据中抽取某些有意义的感念,则我们能用更少的比特位来表述这个数据。
从信息论的角度则是数据之间存在相关性,则有可压缩性。
SVD就是用来将一个大的矩阵以降低维数的方式进行有损地压缩。
降维:
下面我们将用一个具体的例子展示svd的具体过程。
首先是A矩阵。
A =
5 5 0 5
5 0 3 4
3 4 0 3
0 0 5 3
5 4 4 5
5 4 5 5
(代表上图的评分矩阵)
使用matlab调用svd函数:
[U,S,Vtranspose]=svd(A)
U =
-0.4472 -0.5373 -0.0064 -0.5037 -0.3857 -0.3298
-0.3586 0.2461 0.8622 -0.1458 0.0780 0.2002
-0.2925 -0.4033 -0.2275 -0.1038 0.4360 0.7065
-0.2078 0.6700 -0.3951 -0.5888 0.0260 0.0667
-0.5099 0.0597 -0.1097 0.2869 0.5946 -0.5371
-0.5316 0.1887 -0.1914 0.5341 -0.5485 0.2429
S =
17.7139 0 0 0
0 6.3917 0 0
0 0 3.0980 0
0 0 0 1.3290
0 0 0 0
0 0 0 0
Vtranspose =
-0.5710 -0.2228 0.6749 0.4109
-0.4275 -0.5172 -0.6929 0.2637
-0.3846 0.8246 -0.2532 0.3286
-0.5859 0.0532 0.0140 -0.8085
分解矩阵之后我们首先需要明白S的意义。
可以看到S很特别,是个对角线矩阵。
每个元素非负,而且依次减小,具体要讲明白元素值的意思大概和线性代数的特征向量,特征值有关。
但是可以大致理解如下:
在线性空间里,每个向量代表一个方向。
所以特征值是代表该矩阵向着该特征值对应的特征向量的方向的变化权重。
所以可以取S对角线上前k个元素。
当k=2时候即将S(6*4)降维成S(2*2),
同时U(6*6),Vtranspose(4*4)相应地变为 U(6*2),Vtranspose(4*2).
如下图(图片里的usv矩阵元素值和我自己matlab算出的usv矩阵元素值有些正负不一致,但是本质是相同的):
此时我们用降维后的U,S,V来相乘得到A2
A2=U(1:6,1:2)*S(1:2,1:2)*(V(1:4,1:2))' //matlab语句
A2 =
5.2885 5.1627 0.2149 4.4591
3.2768 1.9021 3.7400 3.8058
3.5324 3.5479 -0.1332 2.8984
1.1475 -0.6417 4.9472 2.3846
5.0727 3.6640 3.7887 5.3130
5.1086 3.4019 4.6166 5.5822
此时我们可以很直观地看出,A2和A很接近,这就是之前说的降维可以看成一种数据的有损压缩。
接下来我们开始分析该矩阵中数据的相关性。
我们将u的第一列当成x值,第二列当成y值。即u的每一行用一个二维向量表示,同理v的每一行也用一个二维向量表示。
如下图:
从图中可以看出:
Season5,Season6特别靠近。Ben和Fred也特别靠近。
同时我们仔细看一下A矩阵可以发现,A矩阵的第5行向量和第6行向量特别相似,Ben所在的列向量和Fred所在的列向量也特别相似。
所以从直观上我们发现U矩阵和V矩阵可以近似来代表A矩阵,换据话说就是将A矩阵压缩成U矩阵和V矩阵,至于压缩比例得看当时对S矩阵取前k个数的k值是多少。
到这里,我们已经完成了一半。
寻找相似用户:
依然用实例来说明:
我们假设,现在有个名字叫Bob的新用户,并且已知这个用户对season n的评分向量为:[5 5 0 0 0 5]。(此向量为列向量)
我们的任务是要对他做出个性化的推荐。
我们的思路首先是利用新用户的评分向量找出该用户的相似用户。
如上图(图中第二行式子有错误,Bob的转置应为行向量)。
对图中公式不做证明,只需要知道结论,结论是得到一个Bob的二维向量,即知道Bob的坐标。
将Bob坐标添加进原来的图中:
然后从图中找出和Bob最相似的用户。
注意,最相似并不是距离最近的用户,这里的相似用余弦相似度计算。(关于相似度还有很多种计算方法,各有优缺点)
即夹角与Bob最小的用户坐标。
可以计算出最相似的用户是ben。
接下来的推荐策略就完全取决于个人选择了。
这里介绍一个非常简单的推荐策略:
找出最相似的用户,即ben。
观察ben的评分向量为:【5 5 3 0 5 5】。
对比Bob的评分向量:【5 5 0 0 0 5】。
然后找出ben评分过而Bob未评分的item并排序,即【season 5:5,season 3:5】。
即推荐给Bob的item依次为 season5 和 season3。
最后还有一些关于整个推荐思路的可改进的地方:
1.
svd本身就是时间复杂度高的计算过程,如果数据量大的情况恐怕时间消耗无法忍受。
不过可以使用梯度下降等机器学习的相关方法来进行近似计算,以减少时间消耗。
2.
相似度计算方法的选择,有多种相似度计算方法,每种都有对应优缺点,对针对不同场景使用最适合的相似度计算方法。
3.
推荐策略:首先是相似用户可以多个,每个由相似度作为权重来共同影响推荐的item的评分。
SVD在推荐系统中的应用的更多相关文章
- SVD在推荐系统中的应用详解以及算法推导
SVD在推荐系统中的应用详解以及算法推导 出处http://blog.csdn.net/zhongkejingwang/article/details/43083603 前面文章SVD原理及推 ...
- NMF和SVD在推荐系统中的应用(实战)
本文以NMF和经典SVD为例,讲一讲矩阵分解在推荐系统中的应用. 数据 item\user Ben Tom John Fred item 1 5 5 0 5 item 2 5 0 3 4 item 3 ...
- 多维数组分解----SVD在推荐系统中的应用-
http://www.janscon.com/multiarray/rs_used_svd.html [声明]本文主要参考自论文<A SINGULAR VALUE DECOMPOSITION A ...
- 从SVD到推荐系统
最近在学习推荐系统(Recommender System),跟大部分人一样,我也是从<推荐系统实践>学起,同时也想跟学机器学习模型时一样使用几个开源的python库玩玩.于是找到了surp ...
- SVD在餐馆菜肴推荐系统中的应用
SVD在餐馆菜肴推荐系统中的应用 摘要:餐馆可以分为很多类别,比如中式.美式.日式等等.但是这些类别不一定够用,有的人喜欢混合类别.对用户对菜肴的点评数据进行分析,可以提取出区分菜品的真正因素,利用这 ...
- SVD++:推荐系统的基于矩阵分解的协同过滤算法的提高
1.背景知识 在讲SVD++之前,我还是想先回到基于物品相似的协同过滤算法.这个算法基本思想是找出一个用户有过正反馈的物品的相似的物品来给其作为推荐.其公式为:
- 使用矩阵分解(SVD)实现推荐系统
http://ling0322.info/2013/05/07/recommander-system.html 这个学期Web智能与社会计算的大作业就是完成一个推荐系统参加百度电影推荐算法大赛,成绩按 ...
- RS:推荐系统中的数据稀疏和冷启动问题
如何在没有大量用户数据的情况下设计个性化推荐系统并且让用户对推荐结果满意从而愿意使用推荐系统,就是冷启动问题. 冷启动问题主要分为三类: (1) 用户冷启动:如何给新用户做个性化推荐的问题,新用户刚使 ...
- 14、RALM: 实时 look-alike 算法在推荐系统中的应用
转载:https://zhuanlan.zhihu.com/p/71951411 RALM: 实时 look-alike 算法在推荐系统中的应用 0. 导语 本论文题为<Real-time At ...
随机推荐
- Oracle安装过程物理内存检查及临时temp空间不足解决办法
物理内存 – 此先决条件将测试系统物理内存总量是否至少为 922MB (944128.0KB). 预期值 : N/A 实际值 : N/A 错误列表: – 可用物理内存 PRVF-7531 : 无法在节 ...
- SQLServer2014新功能
随机存取存储器 OLTP:提供了内置在芯 SQL Server 数据库内存 OLTP 特征,为了显著提高事务数据库应用程序的速度和吞吐量.随机存取存储器 OLTP 它是包含在 SQL Server 2 ...
- MDCC 2014移动开发者大会 小礼品展商活动
MDCC 2014移动开发者大会 小礼品展商活动 watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvdGVzdGNzX2Ru/font/5a6L5L2T/fon ...
- POJ 2417 Discrete Logging 离散对数
链接:http://poj.org/problem?id=2417 题意: 思路:求离散对数,Baby Step Giant Step算法基本应用. 下面转载自:AekdyCoin [普通Baby S ...
- android对app代码混淆
接到新任务.现有项目的代码混淆.在此之前混淆了一些理解,但还不够具体和全面,我知道有些东西混起来相当棘手. 但幸运的是,现在这个项目是不是太复杂(对于这有些混乱).提前完成--这是总结. 第一部分 介 ...
- web项目启动,运行方法
1.显示器(Listener) web文件加入 <listener> <listener-class>cn.ro.common.InitListener</li ...
- Atitit.软件GUIbutton和仪表板(01)--警报系统--
Atitit.软件GUIbutton和仪表板(01)--警报系统-- 1. 温度报警防区(鲁大师,360taskman) 1 2. os-区-----cpu_mem_io资源占用监測 1 3. Vm区 ...
- 最大公约数(Greatest Common Divisor)
两个数的最大公约数.一个典型的解决方案是欧几里德,叫欧几里德算法. 原理:(m,n)代表m和nGCD,和m>n.然后,(m,n)=(n,m%n)=.....直到余数为0. 码如下面: publi ...
- Base64加密解密原理以及代码实现
1. Base64使用A--Z,a--z,0--9,+,/ 这64个字符. 2. 编码原理:将3个字节转换成4个字节( (3 X 8) = 24 = (4 X 6) )先读入3个字节,每读一个字 ...
- Unity3D 表对象分类中的实现(C#)
// Sort by distance in descending order private void SortTargetsByDistance () { targets.Sort(delegat ...