Codeforces.838E.Convex Countour(区间DP)
\(Description\)
给定一个n边凸多边形(保证没有三点共线),求一条经过每个点最多一次的不会相交的路径,使得其长度最大。输出这个长度。
\(Solution\)
最长路径应该是尽可能多走点。因为路径不相交,如果当前在\(x\),下次应是向\(x+1\)或\(x-1\)连边,区间也是如此,即当前区间一定是连续的。
画画图可以发现,每个状态应该是左边可以再连出边或右边可以再连出边。
那么令\(f[i][j][0/1]\)表示在\([i,j]\)时左边/右边可以再连出边时的最长路径长度。
\(i\rightarrow j\)在环上有两条路径,这都要考虑。所以\(i>j\)时表示从\(j\)逆时针走到\(i\)这条路径(\(i\)顺时针到\(j\))。
转移可以从小区间每次长度+1地推到大的,所以只需\(O(n^2)\)。
\(f[i][j][0] = max(f[i+1][j][0]+dis(i,i+1),\ f[i+1][j][1]+dis(i,j))\) (\(f[i][j-1][0/1]\)显然都不对啊)
\(f[i][j][1] = max(f[i][j-1][0]+dis(i,j),\ f[i][j-1][1]+dis(j,j-1))\)
//374ms 147200KB
#include <cmath>
#include <cstdio>
#include <cctype>
#include <algorithm>
#define gc() getchar()
#define Turn(x) ((x+n-1)%n+1)
#define Calc(x,x2,y,y2) (sqrt(1.0*(x-x2)*(x-x2)+1.0*(y-y2)*(y-y2)))
const int N=2505;
int n,x[N],y[N];
double dis[N][N],f[N][N][2];
inline int read()
{
int now=0,f=1;register char c=gc();
for(;!isdigit(c);c=='-'&&(f=-1),c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now*f;
}
int main()
{
n=read();
for(int i=1; i<=n; ++i) x[i]=read(),y[i]=read();
for(int i=1; i<n; ++i)
for(int j=i+1; j<=n; ++j)
dis[j][i]=dis[i][j]=Calc(x[i],x[j],y[i],y[j]);
double ans=0;
for(int len=1; len<n; ++len)
for(int i=1,j; i<=n; ++i)
{
j=Turn(i+len);
f[i][j][0] = std::max(f[Turn(i+1)][j][0]+dis[i][Turn(i+1)], f[Turn(i+1)][j][1]+dis[i][j]);
f[i][j][1] = std::max(f[i][Turn(j-1)][0]+dis[i][j], f[i][Turn(j-1)][1]+dis[j][Turn(j-1)]);
ans=std::max(ans,std::max(f[i][j][0],f[i][j][1]));//不一定走n个点...吗?
}
printf("%.10lf\n",ans);
return 0;
}
Codeforces.838E.Convex Countour(区间DP)的更多相关文章
- Codeforces 838E Convex Countour
题 OvO http://codeforces.com/contest/838/problem/E (IndiaHacks 2nd Elimination 2017 (unofficial, unra ...
- Codeforces - 149D 不错的区间DP
题意:有一个字符串 s. 这个字符串是一个完全匹配的括号序列.在这个完全匹配的括号序列里,每个括号都有一个和它匹配的括号 你现在可以给这个匹配的括号序列中的括号染色,且有三个要求: 每个括号只有三种情 ...
- Codeforces.392E.Deleting Substrings(区间DP)
题目链接 \(Description\) \(Solution\) 合法的子序列只有三种情况:递增,递减,前半部分递增然后一直递减(下去了就不会再上去了)(当然还要都满足\(|a_{i+1}-a_i| ...
- Codeforces 983B. XOR-pyramid【区间DP】
LINK 定义了一种函数f 对于一个数组b 当长度是1的时候是本身 否则是用一个新的数组(长度是原数组-1)来记录相邻数的异或,对这个数组求函数f 大概是这样的: \(f(b[1]⊕b[2],b[2] ...
- CodeForces - 1025D: Recovering BST (区间DP)
Dima the hamster enjoys nibbling different things: cages, sticks, bad problemsetters and even trees! ...
- Codeforces 1114D Flood Fill (区间DP or 最长公共子序列)
题意:给你n个颜色块,颜色相同并且相邻的颜色块是互相连通的(连通块).你可以改变其中的某个颜色块的颜色,不过每次改变会把它所在的连通块的颜色也改变,问最少需要多少次操作,使得n个颜色块的颜色相同. 例 ...
- Codeforces 958C3 - Encryption (hard) 区间dp+抽屉原理
转自:http://www.cnblogs.com/widsom/p/8863005.html 题目大意: 比起Encryption 中级版,把n的范围扩大到 500000,k,p范围都在100以内, ...
- CodeForces 149D Coloring Brackets 区间DP
http://codeforces.com/problemset/problem/149/D 题意: 给一个给定括号序列,给该括号上色,上色有三个要求 1.只有三种上色方案,不上色,上红色,上蓝色 2 ...
- codeforces 149D Coloring Brackets (区间DP + dfs)
题目链接: codeforces 149D Coloring Brackets 题目描述: 给一个合法的括号串,然后问这串括号有多少种涂色方案,当然啦!涂色是有限制的. 1,每个括号只有三种选择:涂红 ...
随机推荐
- Hadoop生态圈-Flume的主流Channel源配置
Hadoop生态圈-Flume的主流Channel源配置 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一. 二. 三.
- WEB前端技巧之JQuery为动态添加的元素绑定事件.md
jquery 为动态添加的元素绑定事件 如果直接写click函数的话,只能把事件绑定在已经存在的元素上,不能绑定在动态添加的元素上 可以用delegate来实现 .delegate( select ...
- 04 uni-app框架学习:禁用顶部原生导航栏
1.在pages.json中配置 比如要首页禁用 就在首页这个选项里 加上这几句代码 2.效果如下
- aliyun EC2配置利用filezilla配置ftp服务
项目需要在阿里云EC2虚拟主机上配置ftp服务器,看了阿里云的教程可以使用filezilla配置,但一直遇到了一些问题.现记录一些步骤,避免以后出现类似问题. 1安装filezilla server ...
- elasticsearch代码片段,及工具类SearchEsUtil.java
ElasticSearchClient.java package com.zbiti.framework.elasticsearch.utils; import java.util.Arrays; i ...
- 五、vue状态管理模式vuex
一.vuex介绍 Vuex 是一个专为 Vue.js 应用程序开发的状态管理模式.它采用集中式存储管理应用的所有组件的状态,并以相应的规则保证状态以一种可预测的方式发生变化. 即data中属性同时有一 ...
- selnium远程机上传图片遇到的坑
一般上传图片方法采取方案如下: input标签的file类型上传图片,使用对象的sendkeys+路径方法 使用js注入,再用使用对象的sendkeys+路径方法 使用autolt生成的exe,打开对 ...
- 压缩跟踪Compressive Tracking(转)
这位博主总结的实在太好了,从原理到论文到代码,连论文都不用看:论文:http://blog.csdn.net/zouxy09/article/details/8118360 代码部分:http://b ...
- CentOS 6 安装chromium
由于centos 6对C++11支持不足的缘故,目前chromium已经不再支持CentOS 6系列. 这里介绍如何在centos 6系列安装chromium. 1.添加chromium源 cd /e ...
- darknet
darknet第二作者:https://github.com//AlexeyAB/darknet#how-to-train-to-detect-your-custom-objects yolov3实现 ...