j.u.c系列(03)---之AQS:AQS简介
写在前面
Java的内置锁一直都是备受争议的,在JDK 1.6之前,synchronized这个重量级锁其性能一直都是较为低下,虽然在1.6后,进行大量的锁优化策略,但是与Lock相比synchronized还是存在一些缺陷的:虽然synchronized提供了便捷性的隐式获取锁释放锁机制(基于JVM机制),但是它却缺少了获取锁与释放锁的可操作性,可中断、超时获取锁,且它为独占式在高并发场景下性能大打折扣。
在介绍Lock之前,我们需要先熟悉一个非常重要的组件,掌握了该组件JUC包下面很多问题都不在是问题了。该组件就是AQS。
AQS简介
AQS,AbstractQueuedSynchronizer,即队列同步器。它是构建锁或者其他同步组件的基础框架(如ReentrantLock、ReentrantReadWriteLock、Semaphore等),JUC并发包的作者(Doug Lea)期望它能够成为实现大部分同步需求的基础。它是JUC并发包中的核心基础组件。
AQS解决了子啊实现同步器时涉及当的大量细节问题,例如获取同步状态、FIFO同步队列。基于AQS来构建同步器可以带来很多好处。它不仅能够极大地减少实现工作,而且也不必处理在多个位置上发生的竞争问题。
在基于AQS构建的同步器中,只能在一个时刻发生阻塞,从而降低上下文切换的开销,提高了吞吐量。同时在设计AQS时充分考虑了可伸缩行,因此J.U.C中所有基于AQS构建的同步器均可以获得这个优势。
AQS的主要使用方式是继承,子类通过继承同步器并实现它的抽象方法来管理同步状态。
AQS使用一个int类型的成员变量state来表示同步状态,当state>0时表示已经获取了锁,当state = 0时表示释放了锁。它提供了三个方法(getState()、setState(int newState)、compareAndSetState(int expect,int update))来对同步状态state进行操作,当然AQS可以确保对state的操作是安全的。
AQS通过内置的FIFO同步队列来完成资源获取线程的排队工作,如果当前线程获取同步状态失败(锁)时,AQS则会将当前线程以及等待状态等信息构造成一个节点(Node)并将其加入同步队列,同时会阻塞当前线程,当同步状态释放时,则会把节点中的线程唤醒,使其再次尝试获取同步状态。
AQS方法
- getState():返回同步状态的当前值;
- setState(int newState):设置当前同步状态;
- compareAndSetState(int expect, int update):使用CAS设置当前状态,该方法能够保证状态设置的原子性;
- tryAcquire(int arg):独占式获取同步状态,获取同步状态成功后,其他线程需要等待该线程释放同步状态才能获取同步状态;
- tryRelease(int arg):独占式释放同步状态;
- tryAcquireShared(int arg):共享式获取同步状态,返回值大于等于0则表示获取成功,否则获取失败;
- tryReleaseShared(int arg):共享式释放同步状态;
- isHeldExclusively():当前同步器是否在独占式模式下被线程占用,一般该方法表示是否被当前线程所独占;
- acquire(int arg):独占式获取同步状态,如果当前线程获取同步状态成功,则由该方法返回,否则,将会进入同步队列等待,该方法将会调用可重写的tryAcquire(int arg)方法;
- acquireInterruptibly(int arg):与acquire(int arg)相同,但是该方法响应中断,当前线程为获取到同步状态而进入到同步队列中,如果当前线程被中断,则该方法会抛出InterruptedException异常并返回;
- tryAcquireNanos(int arg,long nanos):超时获取同步状态,如果当前线程在nanos时间内没有获取到同步状态,那么将会返回false,已经获取则返回true;
- acquireShared(int arg):共享式获取同步状态,如果当前线程未获取到同步状态,将会进入同步队列等待,与独占式的主要区别是在同一时刻可以有多个线程获取到同步状态;
- acquireSharedInterruptibly(int arg):共享式获取同步状态,响应中断;
- tryAcquireSharedNanos(int arg, long nanosTimeout):共享式获取同步状态,增加超时限制;
- release(int arg):独占式释放同步状态,该方法会在释放同步状态之后,将同步队列中第一个节点包含的线程唤醒;
- releaseShared(int arg):共享式释放同步状态;
CLH同步队列
CLH同步队列是一个FIFO双向队列,AQS依赖它来完成同步状态的管理,当前线程如果获取同步状态失败时,AQS则会将当前线程已经等待状态等信息构造成一个节点(Node)并将其加入到CLH同步队列,同时会阻塞当前线程,当同步状态释放时,会把首节点唤醒(公平锁),使其再次尝试获取同步状态。
在CLH同步队列中,一个节点表示一个线程,它保存着线程的引用(thread)、状态(waitStatus)、前驱节点(prev)、后继节点(next),其定义如下:
static final class Node {
/** 共享 */
static final Node SHARED = new Node();
/** 独占 */
static final Node EXCLUSIVE = null;
/**
* 因为超时或者中断,节点会被设置为取消状态,被取消的节点时不会参与到竞争中的,他会一直保持取消状态不会转变为其他状态;
*/
static final int CANCELLED = 1;
/**
* 后继节点的线程处于等待状态,而当前节点的线程如果释放了同步状态或者被取消,将会通知后继节点,使后继节点的线程得以运行
*/
static final int SIGNAL = -1;
/**
* 节点在等待队列中,节点线程等待在Condition上,当其他线程对Condition调用了signal()后,改节点将会从等待队列中转移到同步队列中,加入到同步状态的获取中
*/
static final int CONDITION = -2;
/**
* 表示下一次共享式同步状态获取将会无条件地传播下去
*/
static final int PROPAGATE = -3;
/** 等待状态 */
volatile int waitStatus;
/** 前驱节点 */
volatile Node prev;
/** 后继节点 */
volatile Node next;
/** 获取同步状态的线程 */
volatile Thread thread;
Node nextWaiter;
final boolean isShared() {
return nextWaiter == SHARED;
}
final Node predecessor() throws NullPointerException {
Node p = prev;
if (p == null)
throw new NullPointerException();
else
return p;
}
Node() {
}
Node(Thread thread, Node mode) {
this.nextWaiter = mode;
this.thread = thread;
}
Node(Thread thread, int waitStatus) {
this.waitStatus = waitStatus;
this.thread = thread;
}
}
CLH同步队列结构图如下:
入列
学了数据结构的我们,CLH队列入列是再简单不过了,无非就是tail指向新节点、新节点的prev指向当前最后的节点,当前最后一个节点的next指向当前节点。代码我们可以看看addWaiter(Node node)方法:
private Node addWaiter(Node mode) {
//新建Node
Node node = new Node(Thread.currentThread(), mode);
//快速尝试添加尾节点
Node pred = tail;
if (pred != null) {
node.prev = pred;
//CAS设置尾节点
if (compareAndSetTail(pred, node)) {
pred.next = node;
return node;
}
}
//多次尝试
enq(node);
return node;
}
addWaiter(Node node)先通过快速尝试设置尾节点,如果失败,则调用enq(Node node)方法设置尾节点
private Node enq(final Node node) {
//多次尝试,直到成功为止
for (;;) {
Node t = tail;
//tail不存在,设置为首节点
if (t == null) {
if (compareAndSetHead(new Node()))
tail = head;
} else {
//设置为尾节点
node.prev = t;
if (compareAndSetTail(t, node)) {
t.next = node;
return t;
}
}
}
}
在上面代码中,两个方法都是通过一个CAS方法compareAndSetTail(Node expect, Node update)来设置尾节点,该方法可以确保节点是线程安全添加的。在enq(Node node)方法中,AQS通过“死循环”的方式来保证节点可以正确添加,只有成功添加后,当前线程才会从该方法返回,否则会一直执行下去。
过程图如下:
出列
CLH同步队列遵循FIFO,首节点的线程释放同步状态后,将会唤醒它的后继节点(next),而后继节点将会在获取同步状态成功时将自己设置为首节点,这个过程非常简单,head执行该节点并断开原首节点的next和当前节点的prev即可,注意在这个过程是不需要使用CAS来保证的,因为只有一个线程能够成功获取到同步状态。过程图如下:
j.u.c系列(03)---之AQS:AQS简介的更多相关文章
- java io系列03之 ByteArrayOutputStream的简介,源码分析和示例(包括OutputStream)
前面学习ByteArrayInputStream,了解了“输入流”.接下来,我们学习与ByteArrayInputStream相对应的输出流,即ByteArrayOutputStream.本章,我们会 ...
- java io系列02之 ByteArrayInputStream的简介,源码分析和示例(包括InputStream)
我们以ByteArrayInputStream,拉开对字节类型的“输入流”的学习序幕.本章,我们会先对ByteArrayInputStream进行介绍,然后深入了解一下它的源码,最后通过示例来掌握它的 ...
- 深入理解Java并发框架AQS系列(二):AQS框架简介及锁概念
深入理解Java并发框架AQS系列(一):线程 深入理解Java并发框架AQS系列(二):AQS框架简介及锁概念 一.AQS框架简介 AQS诞生于Jdk1.5,在当时低效且功能单一的synchroni ...
- Java 集合系列 03 ArrayList详细介绍(源码解析)和使用示例
java 集合系列目录: Java 集合系列 01 总体框架 Java 集合系列 02 Collection架构 Java 集合系列 03 ArrayList详细介绍(源码解析)和使用示例 Java ...
- JavaScript进阶系列03,通过硬编码、工厂模式、构造函数创建JavaScript对象
本篇体验通过硬编码.工厂模式.构造函数来创建JavaScript对象. □ 通过硬编码创建JavaScript对象 当需要创建一个JavaScript对象时,我们可能这样写: var person = ...
- 委托、Lambda表达式、事件系列03,从委托到Lamda表达式
在"委托.Lambda表达式.事件系列02,什么时候该用委托"一文中,使用委托让代码简洁了不少. namespace ConsoleApplication2 { internal ...
- php从入门到放弃系列-03.php函数和面向对象
php从入门到放弃系列-03.php函数和面向对象 一.函数 php真正的威力源自它的函数,内置了1000个函数,可以参考PHP 参考手册. 自定义函数: function functionName( ...
- C#程序集系列03,引用多个module
我们经常在项目中引用程序集.通常情况下,一个程序集包含一个module,但一个程序集也可以包含多个module.本篇就来体验:在一个可以被编译成.exe可执行文件的.cs文件中引用多个module. ...
- Linux NIO 系列(03) 非阻塞式 IO
目录 一.非阻塞式 IO 附:非阻塞式 IO 编程 Linux NIO 系列(03) 非阻塞式 IO Netty 系列目录(https://www.cnblogs.com/binarylei/p/10 ...
- Tk 的基本概念-组件—Tkinter 教程系列03
Tk 的基本概念-组件-Tkinter 教程系列03 前言 Tk 系列教程: Tkinter教程系列01--引言和安装Tk Tkinter教程系列02--第一个真正的 GUI 程序 通过上一节的程序实 ...
随机推荐
- IO 复习字节流字符流拷贝文件
/* 本地文件 URL 文件拷贝 *//*文本文件拷贝 可以通过 字符流,也可以通过字节流*/ /*二进制文件拷贝 只可以通过字节流*//* 希望这个例子能帮助搞懂 字符流与字节流的区别 */ imp ...
- htm、html、shtml网页区别
htm.html.shtml网页区别 html或者htm是一种静态的页面格式,也就是说不需要服务器解析其中的脚本,或者说里面没有服务器端执行的脚本,而shtml或者shtm由于它基于SSI技术,当有服 ...
- Linux - trap 命令
trap 命令用于指定在接收到信号后将要采取的动作,常见的用途是在脚本程序被中断时完成清理工作.当shell接收到sigspec指定的信号时,arg参数(命令)将会被读取,并被执行. trap 信号参 ...
- python爬虫:抓取下载电影文件,合并ts文件为完整视频
目标网站:https://www.88ys.cc/vod-play-id-58547-src-1-num-1.html 反贪风暴4 对电影进行分析 我们发现,电影是按片段一点点加载出来的,我们分别抓取 ...
- DSO 优化代码中的 Schur Complement
接上一篇博客<直接法光度误差导数推导>,DSO 代码中 CoarseInitializer::trackFrame 目的是优化两帧(ref frame 和 new frame)之间的相对状 ...
- RabbitMq Queue一些方法及参数
方法: 1.QueueDeclare 声明队列 public static QueueDeclareOk QueueDeclare(String queue, Boolean durable, Boo ...
- Longest Words
Given a dictionary, find all of the longest words in the dictionary. Example Given { "dog" ...
- Socket心跳包机制总结【转】
转自:https://blog.csdn.net/qq_23167527/article/details/54290726 跳包之所以叫心跳包是因为:它像心跳一样每隔固定时间发一次,以此来告诉服务器, ...
- js async await 终极异步解决方案
既然有了promise 为什么还要有async await ? 当然是promise 也不是完美的异步解决方案,而 async await 的写法看起来更加简单且容易理解. 回顾 Promise Pr ...
- Linux 黑白界面显示
2014年1月14日 15:47:47 不知道别人怎么看,反正我觉得黑白配显示很方便阅读 命令: ls 脚本: ~/.bashrc 指令: alias ls='ls --color=never' 命令 ...