P2398 GCD SUM
一开始是憨打表,后来发现打多了,超过代码长度了。缩小之后是30分,和暴力一样。正解是,用f[k]表示gcd为k的一共有多少对。ans=sigma k(1->n) k*
f[k].g[k]表示f[k]+f[2*k]+...+f[(n/k)*k];
so f[k]=g[k]-(f[2*k]+...+f[(n/k)*k])
g[k]=(n/k)*(n/k)
比如g[5] (5,5,10,15..20)
复杂度是调和级数 nlnn

#include<iostream>
#include<cstdio>
#include<queue>
#include<algorithm>
#include<cmath>
#include<ctime>
#include<cstring>
#define inf 2147483647
#define For(i,a,b) for(register long long i=a;i<=b;i++)
#define p(a) putchar(a)
#define g() getchar() using namespace std;
long long n;
long long f[];
long long ans;
void in(long long &x)
{ char c=g();x=;
while(c<''||c>'')c=g();
while(c<=''&&c>='')x=x*+c-'',c=g();
} void o(long long x)
{
if(x>)o(x/);
p(x%+'');
} int main()
{
cin>>n;
for(long long k=n;k>=;k--)
{
long long sum=;
For(i,,n)
{
if(i*k<=n)
sum+=f[i*k];
else
break;
}
f[k]=(n/k)*(n/k)-sum;
}
for(long long k=n;k>=;k--)
{
ans+=k*f[k];
}
o(ans);
return ;
}

P2398 GCD SUM的更多相关文章

  1. 洛谷P2398 GCD SUM (数学)

    洛谷P2398 GCD SUM 题目描述 for i=1 to n for j=1 to n sum+=gcd(i,j) 给出n求sum. gcd(x,y)表示x,y的最大公约数. 输入输出格式 输入 ...

  2. 洛谷P2398 GCD SUM [数论,欧拉筛]

    题目传送门 GCD SUM 题目描述 for i=1 to n for j=1 to n sum+=gcd(i,j) 给出n求sum. gcd(x,y)表示x,y的最大公约数. 输入输出格式 输入格式 ...

  3. 洛谷P2398 GCD SUM

    题目描述 for i=1 to n for j=1 to n sum+=gcd(i,j) 给出n求sum. gcd(x,y)表示x,y的最大公约数. 输入输出格式 输入格式: n 输出格式: sum ...

  4. 洛谷 P2398 GCD SUM || uva11417,uva11426,uva11424,洛谷P1390,洛谷P2257,洛谷P2568

    https://www.luogu.org/problemnew/show/P2398 $原式=\sum_{k=1}^n(k\sum_{i=1}^n\sum_{j=1}^n[(i,j)=k])$ 方法 ...

  5. *P2398 GCD SUM[数论]

    题目描述 for i=1 to n for j=1 to n sum+=gcd(i,j) 解析 给出n求sum. gcd(x,y)表示x,y的最大公约数. 直接枚举复杂度为\(O(n^2)\),显然无 ...

  6. 洛谷 P2398 GCD SUM 题解

    题面 挺有意思的. 设f[i]表示gcd(i,j)=i的个数,g[i]表示k|gcd(i,j)的个数; g[i]=(n/i)*(n/i); g[i]=f[i]+f[2i]+f[3i]+...; 所以f ...

  7. acdream 1148 GCD SUM 莫比乌斯反演 ansx,ansy

    GCD SUM Time Limit: 8000/4000MS (Java/Others)Memory Limit: 128000/64000KB (Java/Others) SubmitStatis ...

  8. GCD SUM 强大的数论,容斥定理

    GCD SUM Time Limit: 8000/4000MS (Java/Others) Memory Limit: 128000/64000KB (Java/Others) SubmitStatu ...

  9. Luogu2398 GCD SUM

    Luogu2398 GCD SUM 求 \(\displaystyle\sum_{i=1}^n\sum_{j=1}^n\gcd(i,j)\) \(n\leq10^5\) 数论 先常规化式子(大雾 \[ ...

随机推荐

  1. 莫比乌斯反演学习笔记+[POI2007]Zap(洛谷P3455,BZOJ1101)

    先看一道例题:[POI2007]Zap BZOJ 洛谷 题目大意:$T$ 组数据,求 $\sum^n_{i=1}\sum^m_{j=1}[gcd(i,j)=k]$ $1\leq T\leq 50000 ...

  2. 【bzoj2844】 albus就是要第一个出场

    http://www.lydsy.com/JudgeOnline/problem.php?id=2844 (题目链接) 题意 给出${n}$个数,它们可以异或出${n^2}$个数,将这些数从小到大排列 ...

  3. 新年的展望,2018 hello world~

    虽然离$2017$到$2018$的跨年已经过去很久了,但还是想写点东西试图拯救一下最近有些颓势的自己~ $2017$对我来说是意义重大的一年,这一年里,我有欢笑也有泪水,有收获也有挫折,有坚强也有脆弱 ...

  4. (转)eclipse 报错 :The method list(String, Object[]) is ambiguous for the type BaseHibernateDao

    背景:在开发过程中,经常遇到各种各样的编译问题,不断的总结,才能更好的提高效率. 描述 [报错] :The method list(String, Object[]) is ambiguous for ...

  5. ByteBuffer: 当由一个byte[]来生成一个固定不变的ByteBuffer时,使用ByteBuffer.wrap(byte[]);

    StringBuilder sb = new StringBuilder(1024); //向sb中写入900个左右的随机字符内容 for(int j=1; j< 50;j++) { sb.ap ...

  6. Java访问权限控制

    访问权限控制           java提供了访问权限修饰词,以供类库开发人员向客户端程序员指明哪些是可用的,哪些是不可用的.访问权限控制的等级,从最大权限到最小权限依次是:public.prote ...

  7. python循环删除列表元素常见错误与正确方法

    python循环删除列表元素 觉得有用的话,欢迎一起讨论相互学习~Follow Me 常见错误 常见错误一:使用固定长度循环删除列表元素 # 使用固定长度循环pop方法删除列表元素 num_list_ ...

  8. [转]Python numpy函数hstack() vstack() stack() dstack() vsplit() concatenate()

    Python numpy函数hstack() vstack() stack() dstack() vsplit() concatenate() 觉得有用的话,欢迎一起讨论相互学习~Follow Me ...

  9. SQL记录-PLSQL记录

    PL/SQL记录   PL/SQL记录就是可以容纳不同类型的数据项的数据结构.记录由不同字段,类似于数据库表的行. 例如,要保留跟踪图书馆中的书籍.可能要跟踪有关每本书下面的属性类似:标题,作者,主题 ...

  10. nginx配置自动跳转

    阅读更多 希望实现的效果是,用户只要访问域名,自动跳转到index.html页面 原本配置为: location / { root   /users/apple/git_local/YAE/YAE/f ...