显然存在方案的数一定是L的因数,考虑对其因子预处理答案,O(1)回答。

  考虑每个质因子,设其在g中有x个,l中有y个,则要求所有选中的数该质因子个数都在[x,y]中,且存在数的质因子个数为x、y。对于后一个限制,显然可以简单地容斥,即[x,y]-[x+1,y]-[x,y-1]+[x+1,y-1],枚举这个至多是48的,这个取最大值时因子个数是28。暴力枚举数数即可。复杂度总之O(能过)。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<cstdlib>
#include<algorithm>
using namespace std;
#define P 1000000007
#define ll long long
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int n,g,l,u,m,prime[],cnt[][],d[],ans[],p[][],q[][],a[],tot,t,sum;
int ksm(int a,int k)
{
int s=;
for (;k;k>>=,a=1ll*a*a%P) if (k&) s=1ll*s*a%P;
return s;
}
void get(int k,int s)
{
if (k>t) {sum++;return;}
ll x=ksm(prime[k],cnt[][k]);
for (int i=cnt[][k];i<=cnt[][k];i++)
{
if (s*x<=n) get(k+,s*x);else break;
x=1ll*x*prime[k];
}
}
void build(int k,int s)
{
if (k>t)
{
p[++tot][]=s;
for (int i=;i<=t;i++) p[tot][i]=a[i];
return;
}
ll x=ksm(prime[k],cnt[][k]);
for (int i=cnt[][k];i<=cnt[][k];i++)
{
a[k]=i;
if (s*x<=n) build(k+,s*x);else break;
x=1ll*x*prime[k];
}
}
void calc(int op)
{
//for (int i=1;i<=t;i++) cout<<prime[i]<<' '<<cnt[0][i]<<' '<<cnt[1][i]<<endl;cout<<endl;
sum=;get(,);
for (int i=;i<=tot;i++)
{
bool flag=;
for (int j=;j<=t;j++)
if (p[i][j]<cnt[][j]||p[i][j]>cnt[][j]) {flag=;break;}
if (flag)
{
ans[i]+=op*ksm(,sum-);
if (ans[i]<) ans[i]+=P;if (ans[i]>=P) ans[i]-=P;
}
}
}
void dfs(int k,int op)
{
if (k>t) {calc(op);return;}
dfs(k+,op);
cnt[][k]++;dfs(k+,-op);
cnt[][k]--;dfs(k+,op);
cnt[][k]--;dfs(k+,-op);
cnt[][k]++;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj5019.in","r",stdin);
freopen("bzoj5019.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read(),g=read(),l=read(),m=read();
if (l%g) {for (int i=;i<=m;i++) printf("0\n");return ;}
u=l;
for (int i=;i*i<=u;i++)
if (u%i==)
{
prime[++t]=i,cnt[][t]=;u/=i;
while (u%i==) cnt[][t]++,u/=i;
}
if (u>) prime[++t]=u,cnt[][t]=;
u=g;
for (int i=;i<=t;i++)
while (u%prime[i]==) u/=prime[i],cnt[][i]++;
build(,);
for (int i=;i<=tot;i++) d[i]=p[i][];
sort(d+,d+tot+);
for (int i=;i<=tot;i++)
for (int j=;j<=t;j++)
q[i][j]=p[i][j];
for (int i=;i<=tot;i++)
{
int x=lower_bound(d+,d+tot+,q[i][])-d;
for (int j=;j<=t;j++) p[x][j]=q[i][j];
}
dfs(,);
while (m--)
{
int x=read(),y=lower_bound(d+,d+tot+,x)-d;
if (d[y]!=x) {printf("0\n");continue;}
else printf("%d\n",ans[y]);
}
return ;
}

BZOJ5019 SNOI2017遗失的答案(容斥原理)的更多相关文章

  1. BZOJ5019[Snoi2017]遗失的答案——FWT+状压DP

    题目描述 小皮球在计算出答案之后,买了一堆皮肤,他心里很开心,但是一不小心,就忘记自己买了哪些皮肤了.==|||万 幸的是,他还记得他把所有皮肤按照1-N来编号,他买来的那些皮肤的编号(他至少买了一款 ...

  2. bzoj5019: [Snoi2017]遗失的答案

    Description 小皮球在计算出答案之后,买了一堆皮肤,他心里很开心,但是一不小心,就忘记自己买了哪些皮肤了.==|||万 幸的是,他还记得他把所有皮肤按照1-N来编号,他买来的那些皮肤的编号( ...

  3. 【BZOJ5019】[SNOI2017]遗失的答案(FWT,动态规划)

    [BZOJ5019][SNOI2017]遗失的答案(FWT,动态规划) 题面 BZOJ 题解 发现\(10^8\)最多分解为不超过\(8\)个本质不同质数的乘积. 而\(gcd\)和\(lcm\)分别 ...

  4. bzoj 5019: [Snoi2017]遗失的答案【dp+FWT】

    满足GL的组合一定包含GL每个质因数最大次幂个最小次幂,并且能做限制这些数不会超过600个 然后质因数最多8个,所以可以状压f[s1][s2]为选s1集合满足最大限制选s2集合满足最小限制 dfs一下 ...

  5. bzoj 5019 [Snoi2017]遗失的答案

    题面 https://www.lydsy.com/JudgeOnline/problem.php?id=5019 题解 如果L不是G的倍数 答案为0 下面考虑G|L的情况 将G,L质因数分解 设$L= ...

  6. LOJ2257 SNOI2017 遗失的答案 容斥、高维前缀和

    传送门 数字最小公倍数为\(L\)的充分条件是所有数都是\(L\)的约数,而\(10^8\)内最多约数的数的约数也只有\(768\)个.所以我们先暴力找到所有满足是\(L\)的约数.\(G\)的倍数的 ...

  7. luogu P5366 [SNOI2017]遗失的答案

    luogu 首先gcd为\(G\),lcm为\(L\),有可能出现的数(指同时是\(G\)的因数以及是\(L\)的倍数)可以发现只有几百个.如果选出的数要能取到gcd,那么对于每种质因子,都要有一个数 ...

  8. 洛谷$P5366\ [SNOI2017]$遗失的答案 数论+$dp$

    正解:数论$dp$ 解题报告: 传送门$QwQ$ 考虑先质因数分解.所以$G$就相当于所有系数取$min$,$L$就相当于所有系数取$max$ 这时候考虑,因为数据范围是$1e8$,$1e8$内最多有 ...

  9. [SNOI2017]遗失的答案

    题目 首先\(G,L\)肯定会满足\(G|L\),否则直接全部输出\(0\) 之后我们考虑一下能用到的质因数最多只有\(8\)个 同时我们能选择的数\(x\)肯定是\(L\)的约数,还得是\(G\)的 ...

随机推荐

  1. day47

    高级布局 一.文档流(normal flow) 1.概念 本质为normal flow(普通流.常规流)将窗体自上而下分成一行一行,块级元素从上至下.行内元素在每行中从左至右的顺序依次排放元素. v_ ...

  2. STS-创建spring配置文件

    1.创建一个bean文件 2.输入文件名applicationContext.xml 3.这里会自动显示模板文件 4.创建后,自动填充头不定义 到这里就可以发现,我们创建spring文件时,需要的配置 ...

  3. C#可空类型(转载)

    在程序开发中,有时候需要值类型也为可空类型,比如,在数据库中,我们可以把一个日期Datetime设置为null. 在C# 2.0中就出现了可空类型,允许值类型也可以为空(null),可空类型的实现基于 ...

  4. git reset之后找回本地未提交的代码

    头脑发热使用了git reset命令回退到了之前的一个版本,结果把本地没有提交的代码给覆盖掉了..... 作为一个bug员自然是想恢复,毕竟重新写还得再测一遍,本着能懒一点是一点的原则,开始了恢复代码 ...

  5. 20155327 2017-2018-2《Java程序设计》课程总结

    20155327 2017-2018-2<Java程序设计>课程总结 每周作业链接汇总 预备作业1:我期望的师生关系,对课程的展望:https://www.cnblogs.com/l97- ...

  6. 全虚拟化和半虚拟化的区别 cpu的ring0 ring1又是什么概念? - 转

    http://www.cnblogs.com/xusongwei/archive/2012/07/30/2615592.html ring0是指CPU的运行级别,ring0是最高级别,ring1次之, ...

  7. NetWork——描述一次完整的网络请求过程

    台根DNS,根DNS服务器收到请求后会返回负责这个域名(.net)的服务器的一个IP,本地DNS服务器使用该IP信息联系负责.net域的这台服务器.这台负责.net域的服务器收到请求后,如果自己无法解 ...

  8. Redis简介、安装、配置、启用学习笔记

    前一篇文章有介绍关系型数据库和非关系型数据库的差异,现在就来学习一下用的较广的非关系型数据库:Redis数据库 Redis 简介 Redis 是完全开源免费的,遵守BSD协议,是一个高性能的key-v ...

  9. JavaScript快速入门-简介

    一.JavaScript历史(摘自w3school) JavaScript 是因特网上最流行的脚本语言,它存在于全世界所有 Web 浏览器中,能够增强用户与 Web 站点和 Web 应用程序之间的交互 ...

  10. 使用阿里云Python SDK管理ECS安全组

    准备工作 本机操作系统:CentOS7 python版本:python2.7.5 还需要准备如下信息: 一个云账号.Access Key ID.Access Key Secret.安全组ID.Regi ...