1.相反数

问题描述

  有 N 个非零且各不相同的整数。请你编一个程序求出它们中有多少对相反数(a 和 -a 为一对相反数)。

输入格式

  第一行包含一个正整数 N。(1 ≤ N ≤ 500)。
  第二行为 N 个用单个空格隔开的非零整数,每个数的绝对值不超过1000,保证这些整数各不相同。

输出格式

  只输出一个整数,即这 N 个数中包含多少对相反数。

样例输入

5
1 2 3 -1 -2

样例输出

2

 # include <iostream>
# include <cstdio>
# include <cstring>
# include <algorithm>
# include <cmath>
# define LL long long
using namespace std ; int main ()
{
//freopen("in.txt","r",stdin) ;
int n ;
int a[] ;
scanf("%d" , &n) ;
int i , j;
int sum = ;
for (i = ; i < n ; i++)
scanf("%d" , &a[i]) ;
for (i = ; i < n ; i++)
for (j = ; j < n ; j++)
{
if (i == j )
continue ;
if (a[i] == -a[j])
sum++ ;
}
printf("%d\n" , sum/) ; return ;
}

2.窗口

问题描述

  在某图形操作系统中,有 N 个窗口,每个窗口都是一个两边与坐标轴分别平行的矩形区域。窗口的边界上的点也属于该窗口。窗口之间有层次的区别,在多于一个窗口重叠的区域里,只会显示位于顶层的窗口里的内容。
  当你点击屏幕上一个点的时候,你就选择了处于被点击位置的最顶层窗口,并且这个窗口就会被移到所有窗口的最顶层,而剩余的窗口的层次顺序不变。如果你点击的位置不属于任何窗口,则系统会忽略你这次点击。
  现在我们希望你写一个程序模拟点击窗口的过程。

输入格式

  输入的第一行有两个正整数,即 N 和 M。(1 ≤ N ≤ 10,1 ≤ M ≤ 10)
  接下来 N 行按照从最下层到最顶层的顺序给出 N 个窗口的位置。 每行包含四个非负整数 x1, y1, x2, y2,表示该窗口的一对顶点坐标分别为 (x1, y1) 和 (x2, y2)。保证 x1 < x2,y1 2。
  接下来 M 行每行包含两个非负整数 x, y,表示一次鼠标点击的坐标。
  题目中涉及到的所有点和矩形的顶点的 x, y 坐标分别不超过 2559 和  1439。

输出格式

  输出包括 M 行,每一行表示一次鼠标点击的结果。如果该次鼠标点击选择了一个窗口,则输出这个窗口的编号(窗口按照输入中的顺序从 1 编号到 N);如果没有,则输出"IGNORED"(不含双引号)。

样例输入

3 4
0 0 4 4
1 1 5 5
2 2 6 6
1 1
0 0
4 4
0 5

样例输出

2
1
1
IGNORED

样例说明

  第一次点击的位置同时属于第 1 和第 2 个窗口,但是由于第 2 个窗口在上面,它被选择并且被置于顶层。
  第二次点击的位置只属于第 1 个窗口,因此该次点击选择了此窗口并将其置于顶层。现在的三个窗口的层次关系与初始状态恰好相反了。
  第三次点击的位置同时属于三个窗口的范围,但是由于现在第 1 个窗口处于顶层,它被选择。
  最后点击的 (0, 5) 不属于任何窗口。

 # include <iostream>
# include <cstdio>
# include <cstring>
# include <algorithm>
# include <cmath>
# define LL long long
using namespace std ; struct window
{
int x1 ;
int y1 ;
int x2 ;
int y2 ;
int id ;
}w[]; int main ()
{
//freopen("in.txt","r",stdin) ;
int n , m ;
scanf("%d %d" , &n , &m) ;
int i , j;
for (i = ; i <= n ; i++)
{
scanf("%d%d%d%d" , &w[i].x1 ,&w[i].y1 ,&w[i].x2 ,&w[i].y2 ) ;
w[i].id = i ;
} int x , y , num;
while(m--)
{
scanf("%d%d" , &x , &y) ;
for (i = n ; i >= ; i--)
{
if (x >= w[i].x1 && x <= w[i].x2 && y >= w[i].y1 && y <= w[i].y2)
{
num = w[i].id ;
window temp = w[i] ;
for (int k = i ; k <= n ; k++)
w[k] = w[k+] ;
w[n] = temp ;
break ;
}
}
if (i != )
printf("%d\n" , num) ;
else
printf("IGNORED\n") ;
} return ;
}

3.

命令行选项

问题描述

  请你写一个命令行分析程序,用以分析给定的命令行里包含哪些选项。每个命令行由若干个字符串组成,它们之间恰好由一个空格分隔。这些字符串中的第一个为该命令行工具的名字,由小写字母组成,你的程序不用对它进行处理。在工具名字之后可能会包含若干选项,然后可能会包含一 些不是选项的参数。
  选项有两类:带参数的选项和不带参数的选项。一个合法的无参数选项的形式是一个减号后面跟单个小写字母,如"-a" 或"-b"。而带参数选项则由两个由空格分隔的字符串构成,前者的格式要求与无参数选项相同,后者则是该选项的参数,是由小写字母,数字和减号组成的非空字符串。
  该命令行工具的作者提供给你一个格式字符串以指定他的命令行工具需要接受哪些选项。这个字符串由若干小写字母和冒号组成,其中的每个小写字母表示一个该程序接受的选项。如果该小写字母后面紧跟了一个冒号,它就表示一个带参数的选项,否则则为不带参数的选项。例如, "ab:m:" 表示该程序接受三种选项,即"-a"(不带参数),"-b"(带参数), 以及"-m"(带参数)。
  命令行工具的作者准备了若干条命令行用以测试你的程序。对于每个命令行,你的工具应当一直向后分析。当你的工具遇到某个字符串既不是合法的选项,又不是某个合法选项的参数时,分析就停止。命令行剩余的未分析部分不构成该命令的选项,因此你的程序应当忽略它们。

输入格式

  输入的第一行是一个格式字符串,它至少包含一个字符,且长度不超过 52。格式字符串只包含小写字母和冒号,保证每个小写字母至多出现一次,不会有两个相邻的冒号,也不会以冒号开头。
  输入的第二行是一个正整数 N(1 ≤ N ≤ 20),表示你需要处理的命令行的个数。
  接下来有 N 行,每行是一个待处理的命令行,它包括不超过 256 个字符。该命令行一定是若干个由单个空格分隔的字符串构成,每个字符串里只包含小写字母,数字和减号。

输出格式

  输出有 N 行。其中第 i 行以"Case i:" 开始,然后应当有恰好一个空格,然后应当按照字母升序输出该命令行中用到的所有选项的名称,对于带参数的选项,在输出它的名称之后还要输出它的参数。如果一个选项在命令行中出现了多次,只输出一次。如果一个带参数的选项在命令行中出 现了多次,只输出最后一次出现时所带的参数。

样例输入

albw:x
4
ls -a -l -a documents -b
ls
ls -w 10 -x -w 15
ls -a -b -c -d -e -l

样例输出

Case 1: -a -l
Case 2:
Case 3: -w 15 -x
Case 4: -a -b

4.

无线网络

问题描述

  目前在一个很大的平面房间里有 n 个无线路由器,每个无线路由器都固定在某个点上。任何两个无线路由器只要距离不超过 r 就能互相建立网络连接。
  除此以外,另有 m 个可以摆放无线路由器的位置。你可以在这些位置中选择至多 k 个增设新的路由器。
  你的目标是使得第 1 个路由器和第 2 个路由器之间的网络连接经过尽量少的中转路由器。请问在最优方案下中转路由器的最少个数是多少?

输入格式

  第一行包含四个正整数 n,m,k,r。(2 ≤ n ≤ 100,1 ≤ k ≤ m ≤ 100, 1 ≤ r ≤ 108)。
  接下来 n 行,每行包含两个整数 xi 和 yi,表示一个已经放置好的无线 路由器在 (xi, yi) 点处。输入数据保证第 1 和第 2 个路由器在仅有这 n 个路由器的情况下已经可以互相连接(经过一系列的中转路由器)。
  接下来 m 行,每行包含两个整数 xi 和 yi,表示 (xi, yi) 点处可以增设 一个路由器。
  输入中所有的坐标的绝对值不超过 108,保证输入中的坐标各不相同。

输出格式

  输出只有一个数,即在指定的位置中增设 k 个路由器后,从第 1 个路 由器到第 2 个路由器最少经过的中转路由器的个数。

样例输入

5 3 1 3
0 0
5 5
0 3
0 5
3 5
3 3
4 4
3 0

样例输出

2

5.

任务调度

问题描述

  有若干个任务需要在一台机器上运行。它们之间没有依赖关系,因此 可以被按照任意顺序执行。
  该机器有两个 CPU 和一个 GPU。对于每个任务,你可以为它分配不 同的硬件资源:
  1. 在单个 CPU 上运行。
  2. 在两个 CPU 上同时运行。
  3. 在单个 CPU 和 GPU 上同时运行。
  4. 在两个 CPU 和 GPU 上同时运行。
  一个任务开始执行以后,将会独占它所用到的所有硬件资源,不得中 断,直到执行结束为止。第 i 个任务用单个 CPU,两个 CPU,单个 CPU 加 GPU,两个 CPU 加 GPU 运行所消耗的时间分别为 ai,bi,ci 和 di。
  现在需要你计算出至少需要花多少时间可以把所有给定的任务完成。

输入格式

  输入的第一行只有一个正整数 n(1 ≤ n ≤ 40), 是总共需要执行的任 务个数。
  接下来的 n 行每行有四个正整数 ai, bi, ci, di(ai, bi, ci, di 均不超过 10), 以空格隔开。

输出格式

  输出只有一个整数,即完成给定的所有任务所需的最少时间。

样例输入

3
4 4 2 2
7 4 7 4
3 3 3 3

样例输出

7

样例说明

  有很多种调度方案可以在 7 个时间单位里完成给定的三个任务,以下是其中的一种方案:
  同时运行第一个任务(单 CPU 加上 GPU)和第三个任务(单 CPU), 它们分别在时刻 2 和时刻 3 完成。在时刻 3 开始双 CPU 运行任务 2,在 时刻 7 完成。

第一届CCF软件能力认证的更多相关文章

  1. 【实(dou)力(bi)首(mai)发(meng)】第四次CCF软件能力认证题解

    这次的题总体上相对前三次偏简单.由于实力有限,就分析前四题.     试题编号:    201503-1 试题名称:    图像旋转 时间限制:    5.0s 内存限制:    256.0MB 问题 ...

  2. 第四届CCF软件能力认证(CSP2015) 第五题(最小花费)题解

    [问题描述] C国共有$n$个城市.有$n-1$条双向道路,每条道路连接两个城市,任意两个城市之间能互相到达.小R来到C国旅行,他共规划了$m$条旅行的路线, 第$i$条旅行路线的起点是$s_i$,终 ...

  3. 第四届CCF软件能力认证

    1.图像旋转 问题描述 旋转是图像处理的基本操作,在这个问题中,你需要将一个图像逆时针旋转90度. 计算机中的图像表示可以用一个矩阵来表示,为了旋转一个图像,只需要将对应的矩阵旋转即可. 输入格式 输 ...

  4. 第三届CCF软件能力认证

    1.门禁系统 问题描述 涛涛最近要负责图书馆的管理工作,需要记录下每天读者的到访情况.每位读者有一个编号,每条记录用读者的编号来表示.给出读者的来访记录,请问每一条记录中的读者是第几次出现. 输入格式 ...

  5. 第二届CCF软件能力认证

    1. 相邻数对 问题描述 给定n个不同的整数,问这些数中有多少对整数,它们的值正好相差1. 输入格式 输入的第一行包含一个整数n,表示给定整数的个数. 第二行包含所给定的n个整数. 输出格式 输出一个 ...

  6. 第六届CCF软件能力认证

    1.数位之和 问题描述 给定一个十进制整数n,输出n的各位数字之和. 输入格式 输入一个整数n. 输出格式 输出一个整数,表示答案. 样例输入 20151220 样例输出 13 样例说明 201512 ...

  7. 第五届CCF软件能力认证

    1.数列分段 问题描述 给定一个整数数列,数列中连续相同的最长整数序列算成一段,问数列中共有多少段? 输入格式 输入的第一行包含一个整数n,表示数列中整数的个数. 第二行包含n个整数a1, a2, … ...

  8. CCF计算机软件能力认证试题练习:201912-5 魔数

    CCF计算机软件能力认证试题练习:201912-5 魔数 前置知识:BFS,线段树等 \(f(x) = (x\%A)\%B\) 这个函数值的和直接用线段树维护是不太行的(也可能是我不知道),后来想了很 ...

  9. Java 初级软件工程师 认证考试试卷1

    Java 初级软件工程师 认证考试试卷   笔试(A卷)   考试时间150分钟 总分 100分     姓    名_______________________ 身份证号_____________ ...

随机推荐

  1. C#解析数组形式的json数据

    在学习时遇到把解析json数据的问题,网上也搜了很多资料才得以实现,记录下来以便翻阅. 1. 下载开源的类库Newtonsoft.Json(下载地址http://json.codeplex.com/, ...

  2. Java基础整理之字节、数组、字符串、面向对象

    一.字节(8个)8bit = 1B或1byte1024B = 1Kb 二.强制类型转换顺序及其大小顺序遵循向上转换的规则byte,short,char -> int -> long -&g ...

  3. 用call/cc合成所有的控制流结构

    用call/cc合成所有的控制流结构 来源 https://www.jianshu.com/p/e860f95cad51 call/cc 是非常.非常特殊的,因为它根本无法用 Lambda 演算定义. ...

  4. 使用 yield 减少内存消耗

    php 里面想要处理一个文本文件,有一个方法是使用 file() 函数,但是这个函数会读取文件所有内容,可能会导致占用很大内存. // 28.1 M 的文本文件, 200w 行 $file = 'st ...

  5. P3173 [HAOI2009]巧克力 && P1324 矩形分割

    题目描述 出于某些方面的需求,我们要把一块N×M的木板切成一个个1×1的小方块. 对于一块木板,我们只能从某条横线或者某条竖线(要在方格线上),而且这木板是不均匀的,从不同的线切割下去要花不同的代价. ...

  6. Hadoop生态圈-Azkaban实现文件上传到hdfs并执行MR数据清洗

    Hadoop生态圈-Azkaban实现文件上传到hdfs并执行MR数据清洗 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 如果你没有Hadoop集群的话也没有关系,我这里给出当时我 ...

  7. Python基础【day03】:文件操作(六)

    一.概述 我们工作中需要经常操作文件,下面就讲讲如何用Python操作文件 1.文件操作的流程: 打开文件,得到文件句柄赋值给一个变量 通过文件句柄,对文件进行操作 关闭文件 二.入门 1.语法 op ...

  8. iperf测试网络带宽

    http://blog.chinaaet.com/telantan/p/30901 https://boke.wsfnk.com/archives/288.html https://www.ibm.c ...

  9. Linux ------清除内存中的cache

    首先以Centos6.4的来说,Centos7有些区别 一.buffer/cache/swap的介绍 #cat /etc/redhat-release  #查看系统版本 CentOS release ...

  10. c#的as,is 运算符