bzoj3884上帝与集合的正确用法
Description

Input
Output
Sample Input
2
3
6
Sample Output
1
4
HINT
Source
那么。。
设f[n]就是所求的东西。。
那么。。
ans=2^(f[phi[p]]+phi[p])%p
递归求f就行了。。
听说每次暴力求phi更快?!。
#include <cstdio>
using namespace std;
typedef long long ll;
int i,j,k,n,m,x,y,t,T,p,phi[],prime[],b[];
ll mi(int x,int y,int p){if (y==)return ;if (y==)return x%p;ll t=mi(x,y>>,p);t=(t*t)%p;return y&?(t*x)%p:t;}
ll solve(int p){if (p==)return ;return mi(,solve(phi[p])+phi[p],p);}
void pre(){
for (i=;i<=;i++){
if (!b[i]){prime[++prime[]]=i;phi[i]=i-;}
for (j=;j<=prime[prime[]]&&i*prime[j]<=;j++){
b[i*prime[j]]=;if (i%prime[j]==){phi[i*prime[j]]=phi[i]*prime[j];break;}phi[i*prime[j]]=phi[i]*(prime[j]-);
}
}
}
int main(){scanf("%d",&T);pre();while (T--){scanf("%d",&p);printf("%lld\n",solve(p));}}
bzoj3884上帝与集合的正确用法的更多相关文章
- BZOJ3884: 上帝与集合的正确用法 拓展欧拉定理
Description 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“ ...
- BZOJ3884: 上帝与集合的正确用法(欧拉函数 扩展欧拉定理)
Time Limit: 5 Sec Memory Limit: 128 MBSubmit: 3860 Solved: 1751[Submit][Status][Discuss] Descripti ...
- bzoj3884 上帝与集合的正确用法
a^b mod P=a^(b mod phi(p)) mod p,利用欧拉公式递归做下去. 代码 #pragma comment(linker,"/STACK:1024000000,1024 ...
- bzoj3884: 上帝与集合的正确用法 欧拉降幂公式
欧拉降幂公式:http://blog.csdn.net/acdreamers/article/details/8236942 糖教题解处:http://blog.csdn.net/skywalkert ...
- bzoj3884: 上帝与集合的正确用法 扩展欧拉定理
题意:求\(2^{2^{2^{2^{...}}}}\%p\) 题解:可以发现用扩展欧拉定理不需要很多次就能使模数变成1,后面的就不用算了 \(a^b\%c=a^{b\%\phi c} gcd(b,c) ...
- bzoj千题计划264:bzoj3884: 上帝与集合的正确用法
http://www.lydsy.com/JudgeOnline/problem.php?id=3884 欧拉降幂公式 #include<cmath> #include<cstdio ...
- BZOJ3884 上帝与集合的正确用法(欧拉函数)
设f(n)为模n时的答案,由2k mod n=2k mod φ(n)+φ(n) mod n(并不会证),且k mod φ(n)=f(φ(n)),直接就可以得到一个递推式子.记搜一发即可. #inclu ...
- bzoj3884: 上帝与集合的正确用法(数论)
感觉是今天洛谷月赛T3的弱化版,会写洛谷T3之后这题一眼就会写了... 还是欧拉扩展定理 于是就在指数上递归%phi(p)+phi(p)直到1,则后面的指数就都没用了,这时候返回,边回溯边快速幂.因为 ...
- [bzoj3884]上帝与集合的正确用法——欧拉函数
题目大意 题解 出题人博客 代码 #include <bits/stdc++.h> using namespace std; const int M = 10001000; int phi ...
随机推荐
- Mapreduce -- PageRank
PageRank 简单理解为网页排名,但是网页是根据什么排名的,接下来就简单介绍一下. 举例: 假设网页 A 的内容中有网页 B,C 和 D 的链接,并且 A 的 PageRank的值为0.25. 那 ...
- ME_PROCESS_PO_CUST 实现采购订单行项目增强
用户希望创建采购订单时,输入行项目时,能根据采购订单类型,自动带出科目分类类别. 业务顾问看了一下配置,不能实现这个功能,所以用增强实现. 采购订单BADI增强:ME_PROCESS_PO_CUST. ...
- 20155232《网络对抗》Exp4 恶意代码分析
20155232<网络对抗>Exp4 恶意代码分析 1.实践目标 1.1是监控你自己系统的运行状态,看有没有可疑的程序在运行. 1.2是分析一个恶意软件,就分析Exp2或Exp3中生成后门 ...
- MFC CHotKeyCtrl控件
知识点: CHotKeyCtrl控件 获取热键数据 注册热键 响应热键事件 一.CHotKeyCtrl控件 void SetHotKey( WORD wVirtualKeyCode, WORD wMo ...
- Jenkins控制台输出乱码
一.问题详情 jenkins构建mav任务,在控制台显示乱码: 二.原因分析 1. 查看系统编码和tomcat的编码都正常 # grep encoding /usr/local/tomcat/conf ...
- SpringBoot中使用Quartz笔记
Quartz可以用来做什么? Quartz是一个任务调度框架,可用来做定时任务. 吧啦吧啦......... 还是直接上代码. application.properties 配置文件. * * ? ...
- 全面掌握IO(输入/输出流)
File类: 程序中操作文件和目录都可以使用File类来完成即不管是文件还是目录都是使用File类来操作的,File能新建,删除,重命名文件和目录,但File不能访问文件内容本身,如果需要访问文件本身 ...
- MyBatis最初的程序解读---API
API详解: * 线程安全问题出现的条件 (1) 只有单例对象才可能出现线程安全问题 (2) 多线程环境,即多个线程会共享这个单例对象 ...
- PAT甲题题解-1110. Complete Binary Tree (25)-(判断是否为完全二叉树)
题意:判断一个节点为n的二叉树是否为完全二叉树.Yes输出完全二叉树的最后一个节点,No输出根节点. 建树,然后分别将该树与节点树为n的二叉树相比较,统计对应的节点个数,如果为n,则为完全二叉树,否则 ...
- PAT题解-1118. Birds in Forest (25)-(并查集模板题)
如题... #include <iostream> #include <cstdio> #include <algorithm> #include <stri ...