bzoj3884上帝与集合的正确用法
Description

Input
Output
Sample Input
2
3
6
Sample Output
1
4
HINT
Source

那么。。
设f[n]就是所求的东西。。
那么。。
ans=2^(f[phi[p]]+phi[p])%p
递归求f就行了。。
听说每次暴力求phi更快?!。
#include <cstdio>
using namespace std;
typedef long long ll;
int i,j,k,n,m,x,y,t,T,p,phi[],prime[],b[];
ll mi(int x,int y,int p){if (y==)return ;if (y==)return x%p;ll t=mi(x,y>>,p);t=(t*t)%p;return y&?(t*x)%p:t;}
ll solve(int p){if (p==)return ;return mi(,solve(phi[p])+phi[p],p);}
void pre(){
for (i=;i<=;i++){
if (!b[i]){prime[++prime[]]=i;phi[i]=i-;}
for (j=;j<=prime[prime[]]&&i*prime[j]<=;j++){
b[i*prime[j]]=;if (i%prime[j]==){phi[i*prime[j]]=phi[i]*prime[j];break;}phi[i*prime[j]]=phi[i]*(prime[j]-);
}
}
}
int main(){scanf("%d",&T);pre();while (T--){scanf("%d",&p);printf("%lld\n",solve(p));}}
bzoj3884上帝与集合的正确用法的更多相关文章
- BZOJ3884: 上帝与集合的正确用法 拓展欧拉定理
Description 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“ ...
- BZOJ3884: 上帝与集合的正确用法(欧拉函数 扩展欧拉定理)
Time Limit: 5 Sec Memory Limit: 128 MBSubmit: 3860 Solved: 1751[Submit][Status][Discuss] Descripti ...
- bzoj3884 上帝与集合的正确用法
a^b mod P=a^(b mod phi(p)) mod p,利用欧拉公式递归做下去. 代码 #pragma comment(linker,"/STACK:1024000000,1024 ...
- bzoj3884: 上帝与集合的正确用法 欧拉降幂公式
欧拉降幂公式:http://blog.csdn.net/acdreamers/article/details/8236942 糖教题解处:http://blog.csdn.net/skywalkert ...
- bzoj3884: 上帝与集合的正确用法 扩展欧拉定理
题意:求\(2^{2^{2^{2^{...}}}}\%p\) 题解:可以发现用扩展欧拉定理不需要很多次就能使模数变成1,后面的就不用算了 \(a^b\%c=a^{b\%\phi c} gcd(b,c) ...
- bzoj千题计划264:bzoj3884: 上帝与集合的正确用法
http://www.lydsy.com/JudgeOnline/problem.php?id=3884 欧拉降幂公式 #include<cmath> #include<cstdio ...
- BZOJ3884 上帝与集合的正确用法(欧拉函数)
设f(n)为模n时的答案,由2k mod n=2k mod φ(n)+φ(n) mod n(并不会证),且k mod φ(n)=f(φ(n)),直接就可以得到一个递推式子.记搜一发即可. #inclu ...
- bzoj3884: 上帝与集合的正确用法(数论)
感觉是今天洛谷月赛T3的弱化版,会写洛谷T3之后这题一眼就会写了... 还是欧拉扩展定理 于是就在指数上递归%phi(p)+phi(p)直到1,则后面的指数就都没用了,这时候返回,边回溯边快速幂.因为 ...
- [bzoj3884]上帝与集合的正确用法——欧拉函数
题目大意 题解 出题人博客 代码 #include <bits/stdc++.h> using namespace std; const int M = 10001000; int phi ...
随机推荐
- linux 《vmware下克隆的centos无法配置固定ip》
1.用vmware克隆一个centos 2.进入centos,打开命令行输入ifconfig,运行后发现没有eth0 3.运行网卡启动命令ifconfig eth0 up,再运行ifconfig wa ...
- C3P0配置实战
C3P0: 一个开源的JDBC连接池,它实现了数据源和JNDI绑定,支持JDBC3规范和JDBC2的标准扩展.目前使用它的开源项目有Hibernate,Spring等. 默认情况下(即没有配置连接池的 ...
- 判断库位是否参与MRP运算
表 T001L 字段DISKZ (库存地点MRP标识)为空,参与MRP运算,为1不参与.
- VB6 选择文件夹路径
'--------------------------------------------------------------------------------------- ' Module : ...
- 2017-2018-2 20155203《网络对抗技术》 Exp8:Web基础
基础问题回答 (1)什么是表单 我认为,form概念主要区分于table,table是用网页布局设计,是静态的,form是用于显示和收集信息传递到服务器和后台数据库中,是动态的: 以下是表单的百度百科 ...
- # 20155337《网络对抗》Exp6 信息搜集与漏洞扫描
20155337<网络对抗>Exp6 信息搜集与漏洞扫描 实践目标 (1)各种搜索技巧的应用 (2)DNS IP注册信息的查询 (3)基本的扫描技术:主机发现.端口扫描.OS及服务版本探测 ...
- Luogu P1120 小木棍 [数据加强版]
看了题目心中只有一个字——搜索!!! 但是很显然,朴素的搜索(回溯)绝壁超时. 剪枝&优化(要搞很多,要不然过不了) 1:从小到大搜索它们的因数,这样找到就exit. 2:将数据从大到小排序, ...
- 利用RMAN转移裸设备到文件系统
本文只是为了个人备忘. 参考eagyle的:http://www.eygle.com/archives/2005/12/oracle_howto_move_datafile_raw.html 我首先挂 ...
- adr adrl ldr mov总结整理
ADR这是一条小范围的地址读取伪指令,它将基于PC的相对偏移的地址值读到目标寄存器中. 使用的格式:ADR register,exper. 在编译源程序时,汇编器首先计算出当前PC值( ...
- 使用 restTemplate 实现get/post 请求
get 请求(这里是在 idea 的 test包中,所以需要直接 new RestTemplate() ) 即:RestTemplate restTemplate = new RestTemplate ...