bzoj3884上帝与集合的正确用法
Description

Input
Output
Sample Input
2
3
6
Sample Output
1
4
HINT
Source
那么。。
设f[n]就是所求的东西。。
那么。。
ans=2^(f[phi[p]]+phi[p])%p
递归求f就行了。。
听说每次暴力求phi更快?!。
#include <cstdio>
using namespace std;
typedef long long ll;
int i,j,k,n,m,x,y,t,T,p,phi[],prime[],b[];
ll mi(int x,int y,int p){if (y==)return ;if (y==)return x%p;ll t=mi(x,y>>,p);t=(t*t)%p;return y&?(t*x)%p:t;}
ll solve(int p){if (p==)return ;return mi(,solve(phi[p])+phi[p],p);}
void pre(){
for (i=;i<=;i++){
if (!b[i]){prime[++prime[]]=i;phi[i]=i-;}
for (j=;j<=prime[prime[]]&&i*prime[j]<=;j++){
b[i*prime[j]]=;if (i%prime[j]==){phi[i*prime[j]]=phi[i]*prime[j];break;}phi[i*prime[j]]=phi[i]*(prime[j]-);
}
}
}
int main(){scanf("%d",&T);pre();while (T--){scanf("%d",&p);printf("%lld\n",solve(p));}}
bzoj3884上帝与集合的正确用法的更多相关文章
- BZOJ3884: 上帝与集合的正确用法 拓展欧拉定理
Description 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“ ...
- BZOJ3884: 上帝与集合的正确用法(欧拉函数 扩展欧拉定理)
Time Limit: 5 Sec Memory Limit: 128 MBSubmit: 3860 Solved: 1751[Submit][Status][Discuss] Descripti ...
- bzoj3884 上帝与集合的正确用法
a^b mod P=a^(b mod phi(p)) mod p,利用欧拉公式递归做下去. 代码 #pragma comment(linker,"/STACK:1024000000,1024 ...
- bzoj3884: 上帝与集合的正确用法 欧拉降幂公式
欧拉降幂公式:http://blog.csdn.net/acdreamers/article/details/8236942 糖教题解处:http://blog.csdn.net/skywalkert ...
- bzoj3884: 上帝与集合的正确用法 扩展欧拉定理
题意:求\(2^{2^{2^{2^{...}}}}\%p\) 题解:可以发现用扩展欧拉定理不需要很多次就能使模数变成1,后面的就不用算了 \(a^b\%c=a^{b\%\phi c} gcd(b,c) ...
- bzoj千题计划264:bzoj3884: 上帝与集合的正确用法
http://www.lydsy.com/JudgeOnline/problem.php?id=3884 欧拉降幂公式 #include<cmath> #include<cstdio ...
- BZOJ3884 上帝与集合的正确用法(欧拉函数)
设f(n)为模n时的答案,由2k mod n=2k mod φ(n)+φ(n) mod n(并不会证),且k mod φ(n)=f(φ(n)),直接就可以得到一个递推式子.记搜一发即可. #inclu ...
- bzoj3884: 上帝与集合的正确用法(数论)
感觉是今天洛谷月赛T3的弱化版,会写洛谷T3之后这题一眼就会写了... 还是欧拉扩展定理 于是就在指数上递归%phi(p)+phi(p)直到1,则后面的指数就都没用了,这时候返回,边回溯边快速幂.因为 ...
- [bzoj3884]上帝与集合的正确用法——欧拉函数
题目大意 题解 出题人博客 代码 #include <bits/stdc++.h> using namespace std; const int M = 10001000; int phi ...
随机推荐
- 20155317王新玮《网络对抗技术》实验8 WEB基础实践
20155317王新玮<网络对抗技术>实验8 WEB基础实践 一.实验准备 1.0 实验目标和内容 Web前端HTML.能正常安装.启停Apache.理解HTML,理解表单,理解GET与P ...
- 20155330 《网络攻防》 Exp3 免杀原理与实践
20155330 <网络攻防> Exp3 免杀原理与实践 基础问题回答 杀软是如何检测出恶意代码的? 基于特征码.先对流行代码特征的提取,然后进行程序的比对,如果也检测到相应的特征码的程序 ...
- jQuery调用Asp.Net后台方法
常用的ajax就不讲了,这里主要是说通过ajax调用asp.net后台的cs文件暴露的方法. 前台: <%@ Page Language="C#" AutoEventWire ...
- JAVA 静态方法和实例方法的区别 (图表)
静态方法和实例方法的区别主要体现在两个方面: 在外部调用静态方法时,可以使用"类名.方法名"的方式,也可以使用"对象名.方法名"的方式.而实例方法只有后面这 ...
- 1、Docker概述与安装
1.Docker概述 原文地址:https://docs.docker-cn.com/engine/docker-overview/#docker-engine Docker是一个开发,集装,运行应用 ...
- npm install的几种命令形式区别
转自未来与传说.jigetage 我们在使用 npm install 安装模块的时候 ,一般会使用下面这几种命令形式: npm install moduleName # 安装模块到项目目录下 npm ...
- 数据库——SQL数据连接查询
连接查询 查询结果或条件涉及多个表的查询称为连接查询SQL中连接查询的主要类型 广义笛卡尔积 等值连接(含自然连接) 自身连接查询 外连接查询 一.广义笛卡尔积 不带连 ...
- LeetCode 88. 合并两个有序数组
题目: 给定两个有序整数数组 nums1 和 nums2,将 nums2 合并到 nums1 中,使得 num1 成为一个有序数组. 说明: 初始化 nums1 和 nums2 的元素数量分别为 m ...
- Beta阶段冲刺-3
一. 每日会议 1. 照片 2. 昨日完成工作 3. 今日完成工作 4. 工作中遇到的困难 杨晨露:组内图表部分遇到了问题,他们的问题一出来,我就头疼了......因为要调整计划时间,所以我觉得我的困 ...
- TensorFlow常用API汇总
1.tensorflow的基本运作为了快速的熟悉TensorFlow编程,下面从一段简单的代码开始: import tensorflow as tf #定义‘符号’变量,也称为占位符 a = tf.p ...