P3232 [HNOI2013]游走 解题报告
P3232 [HNOI2013]游走
题目描述
一个无向连通图,顶点从\(1\)编号到\(N\),边从\(1\)编号到\(M\)。 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边的编号的分数。当小Z 到达\(N\)号顶点时游走结束,总分为所有获得的分数之和。 现在,请你对这M条边进行编号,使得小Z获得的总分的期望值最小。
输入输出格式
输入格式:
第一行是正整数\(N\)和\(M\),分别表示该图的顶点数和边数,接下来\(M\)行每行是整数\(u,v(1\le u,v\le N)\),表示顶点\(u\)与顶点\(v\)之间存在一条边。
输入保证\(30\%\)的数据满足\(N\le 10\),\(100\%\)的数据满足\(2\le N\le 500\)且是一个无向简单连通图。
输出格式:
仅包含一个实数,表示最小的期望值,保留3位小数。
\(f_i\)代表\(i\)这个点的期望经过次数,\(d_i\)表示度数
\]
1号点的方程常数加1,代表它原来就有1的次数,n号点不被转移走
然后求每条边的期望经过次数
\]
然后对边的期望次数排序,贪心匹配即可。
Code:
#include <cstdio>
#include <algorithm>
#include <cmath>
const int N=520;
int head[N],to[N*N],Next[N*N],cnt;
void add(int u,int v)
{
to[++cnt]=v,Next[cnt]=head[u],head[u]=cnt;
}
int n,m,eu[N*N],ev[N*N],in[N];
double a[N][N],ct[N*N];
void Gauss()
{
for(int i=1;i<=n;i++)
{
int id=i;
for(int j=i+1;j<=n;j++)
if(fabs(a[j][i])>fabs(a[id][i])) id=j;
std::swap(a[id],a[i]);
for(int j=n+1;j>=i;j--) a[i][j]/=a[i][i];
for(int j=i+1;j<=n;j++)
for(int k=n+1;k>=i;k--)
a[j][k]-=a[i][k]*a[j][i];
}
for(int i=n;i;i--)
for(int j=i-1;j;j--)
a[j][n+1]-=a[i][n+1]*a[j][i];
}
int main()
{
scanf("%d%d",&n,&m);
for(int u,v,i=1;i<=m;i++)
{
scanf("%d%d",&u,&v);
add(u,v),add(v,u);
++in[u],++in[v];
eu[i]=u,ev[i]=v;
}
a[1][n+1]=1;
for(int u=1;u<=n;u++)
{
a[u][u]=1;
for(int i=head[u];i;i=Next[i])
if(to[i]!=n)
a[u][to[i]]=-1.0/in[to[i]];
}
Gauss();
for(int i=1;i<=m;i++)
{
if(eu[i]!=n) ct[i]=a[eu[i]][n+1]/in[eu[i]];
if(ev[i]!=n) ct[i]+=a[ev[i]][n+1]/in[ev[i]];
}
std::sort(ct+1,ct+1+m);
double ans=0;
for(int i=1;i<=m;i++)
ans+=ct[i]*(m+1-i);
printf("%.3f\n",ans);
return 0;
}
2019.1.12
P3232 [HNOI2013]游走 解题报告的更多相关文章
- 题解 P3232 [HNOI2013]游走
洛谷P3232[NOI2013]游走 题目描述 给定一个 n 个点 m 条边的无向连通图,顶点从 1 编号到 n,边从 1 编号到 m. 小 Z 在该图上进行随机游走,初始时小 Z 在 1 号顶点,每 ...
- P3232 [HNOI2013]游走——无向连通图&&高斯消元
题意 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边的编 ...
- 洛谷P3232[HNOI2013]游走
有一个无向简单连通图,顶点从 \(1\) 编号到 \(n\),边从 \(1\) 编号到 \(m\) 小Z在该图上进行随机游走,初始时小Z在\(1\)号顶点,每一步小Z以相等的概率随机选 择当前顶点的某 ...
- [bzoj3143] [洛谷P3232] [HNOI2013] 游走
Description 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点, ...
- P3232 [HNOI2013]游走
吐槽 傻了傻了,对着题解改了好长时间最后发现是自己忘了调用高斯消元了... 思路 期望题,分配编号,显然编号大的分给贡献次数小的,所以需要知道每个边被经过次数的期望 然后边被经过的次数的期望就是连接的 ...
- BZOJ 3143 Luogu P3232 [HNOI2013]游走 (DP、高斯消元)
题目链接: (bzoj) https://www.lydsy.com/JudgeOnline/problem.php?id=3143 (luogu) https://www.luogu.org/pro ...
- 洛谷 P3232 [HNOI2013]游走
链接: P3232 题意: 和上次考试 T4 的简化且无修改一样,经典图上高斯消元求期望. 分析: 要求出每个点的期望出发次数 \(f_i\),每个点度数为 \(d_i\),有 \[f1=\sum\d ...
- 洛谷P3232 [HNOI2013]游走(高斯消元+期望)
传送门 所以说我讨厌数学……期望不会高斯消元也不会……好不容易抄好了高斯消元板子被精度卡成琪露诺了…… 首先,我们先算出走每一条边的期望次数,那么为了最小化期望,就让大的期望次数乘上小编号 边的期望次 ...
- [补档][Hnoi2013]游走
[Hnoi2013]游走 题目 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一 ...
随机推荐
- 【H5】移动端页面根font-size设置
h5rem.js (配置写法①) (function (doc, win) { var docEl = doc.documentElement, resizeEvt = 'orientationc ...
- test_maven_实现表单验证
这篇文章是我的上一篇文章的续集,如未看过,可看一下,上面的test_maven再继续看这个 这篇文章主要是阐述使用struts实现表单验证的功能. 1.首先了解actionContext:Action ...
- 自定义View之实现流行的底部菜单栏中间突起:高仿“咸鱼APP”的底部菜单 - z
http://blog.csdn.net/xh870189248/article/details/75808341 http://blog.csdn.net/yangg194/article/deta ...
- Maltego——互联网情报聚合工具初探(转)
有时候你可曾想过,从一个Email,或者Twitter,或是网站,甚至姓名等等,能找到一个人千丝万缕的联系,并把这些联系整合,利用起来?Maltego就是这样一款优秀而强大的工具.Maltego允许从 ...
- WPF后台线程更新UI
0.讲点废话 最近在做一个文件搜索的小软件,当文件多时,界面会出现假死的状况,于是乎想到另外开一个后台线程,更新界面上的ListView,但是却出现我下面的问题. 1.后台线程问题 2年前写过一个软件 ...
- jQuery调用Asp.Net后台方法
常用的ajax就不讲了,这里主要是说通过ajax调用asp.net后台的cs文件暴露的方法. 前台: <%@ Page Language="C#" AutoEventWire ...
- PostgreSQL同步方案
Windows下Postgre SQL数据库通过Slony-I实现数据库双机同步备份 - 数据库其他综合 - 红黑联盟 postgresql同步流复制的Hot Standby - CSDN博客 使 ...
- markdown 笔记二
Markdown 语法笔记==============================1,头部欢迎# 欢迎使用flaskBlog ------ flask对于我来说,适合快速开发一些小网页,自己也想整 ...
- BugkuCTF 文件上传测试
前言 写了这么久的web题,算是把它基础部分都刷完了一遍,以下的几天将持续更新BugkuCTF WEB部分的题解,为了不影响阅读,所以每道题的题解都以单独一篇文章的形式发表,感谢大家一直以来的支持和理 ...
- linux中使sqlplus能够上下翻页
安装包链接:https://pan.baidu.com/s/1WsQTeEQClM88aEqIvNi2ag 提取码:s241 rlwrap-0.37-1.el6.x86_64.rpm 和 rlwra ...