P3232 [HNOI2013]游走

题目描述

一个无向连通图,顶点从\(1\)编号到\(N\),边从\(1\)编号到\(M\)。 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边的编号的分数。当小Z 到达\(N\)号顶点时游走结束,总分为所有获得的分数之和。 现在,请你对这M条边进行编号,使得小Z获得的总分的期望值最小。

输入输出格式

输入格式:

第一行是正整数\(N\)和\(M\),分别表示该图的顶点数和边数,接下来\(M\)行每行是整数\(u,v(1\le u,v\le N)\),表示顶点\(u\)与顶点\(v\)之间存在一条边。

输入保证\(30\%\)的数据满足\(N\le 10\),\(100\%\)的数据满足\(2\le N\le 500\)且是一个无向简单连通图。

输出格式:

仅包含一个实数,表示最小的期望值,保留3位小数。


\(f_i\)代表\(i\)这个点的期望经过次数,\(d_i\)表示度数

\[f_v=\sum \frac{f_u}{d_u}
\]

1号点的方程常数加1,代表它原来就有1的次数,n号点不被转移走

然后求每条边的期望经过次数

\[E_{u,v}=\frac{f_u}{d_u}+\frac{f_v}{d_v}
\]

然后对边的期望次数排序,贪心匹配即可。


Code:

#include <cstdio>
#include <algorithm>
#include <cmath>
const int N=520;
int head[N],to[N*N],Next[N*N],cnt;
void add(int u,int v)
{
to[++cnt]=v,Next[cnt]=head[u],head[u]=cnt;
}
int n,m,eu[N*N],ev[N*N],in[N];
double a[N][N],ct[N*N];
void Gauss()
{
for(int i=1;i<=n;i++)
{
int id=i;
for(int j=i+1;j<=n;j++)
if(fabs(a[j][i])>fabs(a[id][i])) id=j;
std::swap(a[id],a[i]);
for(int j=n+1;j>=i;j--) a[i][j]/=a[i][i];
for(int j=i+1;j<=n;j++)
for(int k=n+1;k>=i;k--)
a[j][k]-=a[i][k]*a[j][i];
}
for(int i=n;i;i--)
for(int j=i-1;j;j--)
a[j][n+1]-=a[i][n+1]*a[j][i];
}
int main()
{
scanf("%d%d",&n,&m);
for(int u,v,i=1;i<=m;i++)
{
scanf("%d%d",&u,&v);
add(u,v),add(v,u);
++in[u],++in[v];
eu[i]=u,ev[i]=v;
}
a[1][n+1]=1;
for(int u=1;u<=n;u++)
{
a[u][u]=1;
for(int i=head[u];i;i=Next[i])
if(to[i]!=n)
a[u][to[i]]=-1.0/in[to[i]];
}
Gauss();
for(int i=1;i<=m;i++)
{
if(eu[i]!=n) ct[i]=a[eu[i]][n+1]/in[eu[i]];
if(ev[i]!=n) ct[i]+=a[ev[i]][n+1]/in[ev[i]];
}
std::sort(ct+1,ct+1+m);
double ans=0;
for(int i=1;i<=m;i++)
ans+=ct[i]*(m+1-i);
printf("%.3f\n",ans);
return 0;
}

2019.1.12

P3232 [HNOI2013]游走 解题报告的更多相关文章

  1. 题解 P3232 [HNOI2013]游走

    洛谷P3232[NOI2013]游走 题目描述 给定一个 n 个点 m 条边的无向连通图,顶点从 1 编号到 n,边从 1 编号到 m. 小 Z 在该图上进行随机游走,初始时小 Z 在 1 号顶点,每 ...

  2. P3232 [HNOI2013]游走——无向连通图&&高斯消元

    题意 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边的编 ...

  3. 洛谷P3232[HNOI2013]游走

    有一个无向简单连通图,顶点从 \(1\) 编号到 \(n\),边从 \(1\) 编号到 \(m\) 小Z在该图上进行随机游走,初始时小Z在\(1\)号顶点,每一步小Z以相等的概率随机选 择当前顶点的某 ...

  4. [bzoj3143] [洛谷P3232] [HNOI2013] 游走

    Description 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点, ...

  5. P3232 [HNOI2013]游走

    吐槽 傻了傻了,对着题解改了好长时间最后发现是自己忘了调用高斯消元了... 思路 期望题,分配编号,显然编号大的分给贡献次数小的,所以需要知道每个边被经过次数的期望 然后边被经过的次数的期望就是连接的 ...

  6. BZOJ 3143 Luogu P3232 [HNOI2013]游走 (DP、高斯消元)

    题目链接: (bzoj) https://www.lydsy.com/JudgeOnline/problem.php?id=3143 (luogu) https://www.luogu.org/pro ...

  7. 洛谷 P3232 [HNOI2013]游走

    链接: P3232 题意: 和上次考试 T4 的简化且无修改一样,经典图上高斯消元求期望. 分析: 要求出每个点的期望出发次数 \(f_i\),每个点度数为 \(d_i\),有 \[f1=\sum\d ...

  8. 洛谷P3232 [HNOI2013]游走(高斯消元+期望)

    传送门 所以说我讨厌数学……期望不会高斯消元也不会……好不容易抄好了高斯消元板子被精度卡成琪露诺了…… 首先,我们先算出走每一条边的期望次数,那么为了最小化期望,就让大的期望次数乘上小编号 边的期望次 ...

  9. [补档][Hnoi2013]游走

    [Hnoi2013]游走 题目 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一 ...

随机推荐

  1. MIPI Alliance (MIPI联盟)

    一.介绍 1.MIPI联盟,即移动产业处理器接口(Mobile Industry Processor Interface 简称MIPI)联盟.MIPI(移动产业处理器接口)是MIPI联盟发起的为移动应 ...

  2. EZ 2017 12 30 2018noip第二次膜你赛

    去年的比赛了,然而今天才改好. 总体难度适中,有大佬AK. 主要是自己SB第二题没想出来,然后又是可怜的100来分. T1 一道二分+数学的题目. 我们可以二分叫的次数,然后用公式(等差数列,公差都是 ...

  3. python基础学习1-列表使用

    python 列表相关操作方法 namelist = ['a','b','c','d','1','2','3','4'] namelist1 = ['a','b','c','d','1','2','3 ...

  4. STM32烧录的常用方式

    stm32烧录常用的方式一般为ST-LINK(或者J-tag)下载仿真和ISP下载 一.仿真器下载 仿真器分为J-TAG和SWD仿真,SWD仿真只需要4根线(VCC.GND.CLK.DATA)就可以了 ...

  5. PowerBI开发 第一篇:设计PowerBI报表

    PowerBI是微软新一代的交互式报表工具,把相关的静态数据转换为酷炫的可视化的,能够根据filter条件,对数据执行动态筛选,从不同的角度和粒度上分析数据.PowerBI主要由两部分组成:Power ...

  6. CSS 天坑 I - 字体单位

    首先,本文所讨论的“坑”是在做回应式网页设计( Responsive Web Design 以下简称 RWD)时显现的,如果你还只是在做传统的Web设计这算不上是一个坑,因为传统的Web页面是死的,不 ...

  7. [转载]windows下PHP + Nginx curl访问本地地址超时卡死问题的解决方案

    原因: windows 下 nginx+php环境,不支持并发. 解决方案: 1.在配置nginx vhost时,需要同时运行的网站设置不同的fastcgi_pass的端口号 server { ser ...

  8. Win7远程桌面的多用户连接破解

    系统是 64位WIN7 旗舰版 每当我用其它机器连WIN7的3389远程桌面时,WIN7那台机子就会退出到注销用户后的状态了,后来我新建了个用户,用不同用户登陆还是退出,也就是说不能同时2个人操作电脑 ...

  9. 批量备份H3C交换机路由器配置

    第一种(使用ftp下载配置文件): #!/bin/bash datetime=`date +%Y%m%d` BAKTIME=`date +%Y%m%d%H%M%S` user="admin& ...

  10. 初识kibana

    前言: 什么是Kibana?? Kibana是一个开源的分析与可视化平台,设计出来用于和Elasticsearch一起使用的.你可以用kibana搜索.查看.交互存放在Elasticsearch索引里 ...