【刷题】LOJ 6011 「网络流 24 题」运输问题
题目描述
W 公司有 \(m\) 个仓库和 \(n\) 个零售商店。第 \(i\) 个仓库有 \(a_i\) 个单位的货物;第 \(j\) 个零售商店需要 \(b_j\) 个单位的货物。货物供需平衡,即 \(\sum\limits_{i = 1} ^ m a_i = \sum\limits_{j = 1} ^ n b_j\) 。从第 \(i\) 个仓库运送每单位货物到第 \(j\) 个零售商店的费用为 \(c_{ij}\) 。试设计一个将仓库中所有货物运送到零售商店的运输方案,使总运输费用最少。
输入格式
第 \(1\) 行有 \(2\) 个正整数 \(m\) 和 \(n\) ,分别表示仓库数和零售商店数。接下来的一行中有 \(m\) 个正整数 \(a_i\) ,表示第 \(i\) 个仓库有 \(a_i\) 个单位的货物。再接下来的一行中有 \(n\) 个正整数 \(b_j\),表示第 \(j\) 个零售商店需要 \(b_j\) 个单位的货物。接下来的 \(m\) 行,每行有 \(n\) 个整数,表示从第 \(i\) 个仓库运送每单位货物到第 \(j\) 个零售商店的费用 \(c_{ij}\) 。
输出格式
两行分别输出最小运输费用和最大运输费用。
样例
样例输入
2 3
220 280
170 120 210
77 39 105
150 186 122
样例输出
48500
69140
数据范围与提示
\(1 \leq n, m \leq 100\)
题解
费用流模板,大水题一道
源点向仓库连容量为存货,费用为 \(0\) 的边
商店向汇点连容量为需要,费用为 \(0\) 的边
仓库到商店连上对应的边即可
最大费用和最小费用本质相同,将边的费用变成相反数就可以了
#include<bits/stdc++.h>
#define ui unsigned int
#define ll long long
#define db double
#define ld long double
#define ull unsigned long long
const int MAXN=200+10,MAXM=MAXN*MAXN+10,inf=0x3f3f3f3f;
int n,m,a[MAXN],b[MAXN],G[MAXN][MAXN],e,beg[MAXN],s,t,cur[MAXN],vis[MAXN],level[MAXN],to[MAXM<<1],nex[MAXM<<1],was[MAXM<<1],cap[MAXM<<1],clk,p[MAXN];
ll answas;
std::queue<int> q;
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char ch='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(ch!='\0')putchar(ch);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline void insert(int x,int y,int z,int k)
{
to[++e]=y;
nex[e]=beg[x];
beg[x]=e;
cap[e]=z;
was[e]=k;
to[++e]=x;
nex[e]=beg[y];
beg[y]=e;
cap[e]=0;
was[e]=-k;
}
inline void build(int opt)
{
e=1;memset(beg,0,sizeof(beg));answas=0;
for(register int i=1;i<=n;++i)insert(s,i,a[i],0);
for(register int i=1;i<=m;++i)insert(i+n,t,b[i],0);
for(register int i=1;i<=n;++i)
for(register int j=1;j<=m;++j)insert(i,j+n,inf,opt*G[i][j]);
}
inline bool bfs()
{
memset(level,inf,sizeof(level));
level[s]=0;
p[s]=1;
q.push(s);
while(!q.empty())
{
int x=q.front();
q.pop();
p[x]=0;
for(register int i=beg[x];i;i=nex[i])
if(cap[i]&&level[to[i]]>level[x]+was[i])
{
level[to[i]]=level[x]+was[i];
if(!p[to[i]])p[to[i]]=1,q.push(to[i]);
}
}
return level[t]!=inf;
}
inline int dfs(int x,int maxflow)
{
if(x==t||!maxflow)return maxflow;
vis[x]=clk;
int res=0;
for(register int &i=cur[x];i;i=nex[i])
if((vis[to[i]]^vis[x])&&cap[i]&&level[to[i]]==level[x]+was[i])
{
int f=dfs(to[i],min(maxflow,cap[i]));
cap[i]-=f;
cap[i^1]+=f;
res+=f;
answas+=1ll*f*was[i];
maxflow-=f;
if(!maxflow)break;
}
vis[x]=0;
return res;
}
inline int MCMF()
{
int res=0;
while(bfs())clk++,memcpy(cur,beg,sizeof(cur)),res+=dfs(s,inf);
return res;
}
int main()
{
read(n);read(m);
s=n+m+1,t=s+1;
for(register int i=1;i<=n;++i)read(a[i]);
for(register int i=1;i<=m;++i)read(b[i]);
for(register int i=1;i<=n;++i)
for(register int j=1;j<=m;++j)read(G[i][j]);
build(1);MCMF();write(answas,'\n');
build(-1);MCMF();write(-answas,'\n');
return 0;
}
【刷题】LOJ 6011 「网络流 24 题」运输问题的更多相关文章
- 2018.10.14 loj#6011. 「网络流 24 题」运输问题(费用流)
传送门 费用流入门题. 直接按照题意模拟. 把货物的数量当做容量建边. 然后跑一次最小费用流和最大费用流就行了. 代码: #include<bits/stdc++.h> #define N ...
- 【刷题】LOJ 6227 「网络流 24 题」最长k可重线段集问题
题目描述 给定平面 \(\text{xoy}\) 上 \(n\) 个开线段组成的集合 \(\text{I}\) ,和一个正整数 \(k\) ,试设计一个算法. 从开线段集合 \(\text{I}\) ...
- Libre 6011 「网络流 24 题」运输问题 (网络流,最小费用最大流)
Libre 6011 「网络流 24 题」运输问题 (网络流,最小费用最大流) Description W 公司有m个仓库和n个零售商店.第i个仓库有\(a_i\)个单位的货物:第j个零售商店需要\( ...
- LIbreOJ #6011. 「网络流 24 题」运输问题 最小费用最大流
#6011. 「网络流 24 题」运输问题 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: 匿名 提交提交记录统计讨论测试数据 题目描述 ...
- [luogu_P1251][LOJ#6008]「网络流 24 题」餐巾计划
[luogu_P1251][LOJ#6008]「网络流 24 题」餐巾计划 试题描述 一个餐厅在相继的 \(N\) 天里,第 \(i\) 天需要 \(R_i\) 块餐巾 \((i=l,2,-,N)\) ...
- [LOJ#6002]「网络流 24 题」最小路径覆盖
[LOJ#6002]「网络流 24 题」最小路径覆盖 试题描述 给定有向图 G=(V,E).设 P 是 G 的一个简单路(顶点不相交)的集合.如果 V 中每个顶点恰好在 P 的一条路上,则称 P 是 ...
- loj #6014. 「网络流 24 题」最长 k 可重区间集
#6014. 「网络流 24 题」最长 k 可重区间集 题目描述 给定实直线 L LL 上 n nn 个开区间组成的集合 I II,和一个正整数 k kk,试设计一个算法,从开区间集合 I II 中选 ...
- loj #6013. 「网络流 24 题」负载平衡
#6013. 「网络流 24 题」负载平衡 题目描述 G 公司有 n nn 个沿铁路运输线环形排列的仓库,每个仓库存储的货物数量不等.如何用最少搬运量可以使 n nn 个仓库的库存数量相同.搬运货物时 ...
- loj #6122. 「网络流 24 题」航空路线问题
#6122. 「网络流 24 题」航空路线问题 题目描述 给定一张航空图,图中顶点代表城市,边代表两个城市间的直通航线.现要求找出一条满足下述限制条件的且途经城市最多的旅行路线. 从最西端城市出发,单 ...
随机推荐
- 添加mysqld、apache服务到windows服务
mysqld --install “d:\apache\bin\httpd.exe” -k install
- 文理分科 BZOJ3894 & happiness BZOJ2127
分析: 最小割(一开始我没看出来...后来经过提点,大致理解...),不选则割的思想. 我们先这样考虑,将和选理相关的和S相连,与选文相关的和T相连,如果没有第二问,那么建图就是简单的S连cnt,cn ...
- PI monitor error process-RESOURCE_NOT_FOUND-转
事务:sxi_monitor 状态:system error 类型:Request Message Mapping 错误简要:RESOURCE_NOT_FOUND 错误详细信息: <?xml v ...
- vue 使用 proxyTable 解决跨域问题
1.在 main.js 中,在引入 axios: import axios from 'axios' Vue.config.productionTip = false Vue.prototype.$a ...
- mfc 进程的优先级
知识点: 进程优先级 获取当前进程句柄 优先级设置 优先级变动 优先级获取 一.进程优先级(优先级等级) 简单的说就是进程(线程)的优先级越高,那么就可以分占相对多的CPU时间片. ...
- 比较不错的Nosql文章
1. NoSQL简单介绍 2. NoSQL初探之人人都爱Redis:(1)Redis简介与简单安装 3. NoSQL初探之人人都爱Redis:(2)Redis API与常用数据类型简介 4. NoSQ ...
- HTML 背景实例
71.HTML 背景实例好的背景使站点看上去特别棒.背景(Backgrounds)<body> 拥有两个配置背景的标签.背景可以是颜色或者图像.<body> 标签中的背景颜色( ...
- 批量备份H3C交换机路由器配置
第一种(使用ftp下载配置文件): #!/bin/bash datetime=`date +%Y%m%d` BAKTIME=`date +%Y%m%d%H%M%S` user="admin& ...
- 红黑树插入与删除完整代码(dart语言实现)
之前分析了红黑树的删除,这里附上红黑树的完整版代码,包括查找.插入.删除等.删除后修复实现了两种算法,均比之前的更为简洁.一种是我自己的实现,代码非常简洁,行数更少:一种是Linux.Java等源码版 ...
- #Linux第四周学习总结——扒开系统调用的三层皮(上)
Linux第四周学习总结--扒开系统调用的三层皮(上) 一.用户态.内核态和中断 系统调用通过库函数. 1.用户态和内核态 区分(不同的指令执行级别): 用户态:在相应的低执行状态下,代码的掌控范围受 ...