【BZOJ1965】[AHOI2005]洗牌(数论)

题面

BZOJ

洛谷

题解

考虑反过来做这个洗牌的操作,假定当前牌是第\(l\)张。

因为之前洗的时候考虑了前一半和后一半,所以根据\(l\)的奇偶性可以判定在前一半还是后一半,那么\(l/2\)就是在这一半里面在它前面的张数,这样子很容易就可以还原回去。暴力就有\(70\)分了。

  1. #include<iostream>
  2. #include<cstdio>
  3. using namespace std;
  4. #define ll long long
  5. ll n,m,l;
  6. int main()
  7. {
  8. cin>>n>>m>>l;
  9. while(m--)l=(l&1)?(n>>1)+(l>>1)+1:(l>>1);
  10. cout<<l<<endl;
  11. return 0;
  12. }

那么我们现在正着考虑,当前位置是\(l\),洗完一次之后变到哪里去了呢?

如果\(l\le n/2\),那么是\(2l\),如果\(l\gt n/2\),那么是\((l-n/2)*2-1=2l-n-1\)

因为前半部分显然存在\(2l\le n\),而后半部分显然\(2l\gt n+1\),所以我们可以认为每次操作之后都由\(l\)位置变成了\(2l\% (n+1)\)位置。

那么进行了\(m\)次之后出现在了\(l\)位置,即:\(x*2^{m}\equiv l(mod\ n+1)\),而\(n\)是偶数,所以必然和前面的\(2^m\)互质,所以只需要求解一个逆元就好了。

  1. #include<iostream>
  2. #include<cstdio>
  3. using namespace std;
  4. #define ll long long
  5. ll n,m,l;
  6. ll multi(ll a,ll b){ll s=0;while(b){if(b&1)s=(s+a)%(n+1);a=(a+a)%(n+1);b>>=1;}return s;}
  7. ll fpow(ll a,ll b){ll s=1;while(b){if(b&1)s=multi(s,a);a=multi(a,a);b>>=1;}return s;}
  8. ll exgcd(ll a,ll b,ll &x,ll &y)
  9. {
  10. if(!b){x=1;y=0;return a;}
  11. ll d=exgcd(b,a%b,y,x);
  12. y-=a/b*x;return d;
  13. }
  14. ll inv(ll a,ll b)
  15. {
  16. ll x,y;exgcd(a,b,x,y);
  17. return (x%b+b)%b;
  18. }
  19. int main()
  20. {
  21. cin>>n>>m>>l;
  22. l=multi(l,inv(fpow(2,m),n+1));
  23. cout<<l<<endl;
  24. return 0;
  25. }

upd:

压行版本

  1. #include<iostream>
  2. using namespace std;
  3. #define ll long long
  4. ll n,m,l;
  5. ll multi(ll a,ll b){ll s=0;while(b){if(b&1)s=(s+a)%(n+1);a=(a+a)%(n+1);b>>=1;}return s;}
  6. ll fpow(ll a,ll b){ll s=1;while(b){if(b&1)s=multi(s,a);a=multi(a,a);b>>=1;}return s;}
  7. void exgcd(ll a,ll b,ll &x,ll &y){(!b)?(x=1,y=0):(exgcd(b,a%b,y,x),y-=a/b*x);}
  8. ll inv(ll a,ll b){ll x,y;exgcd(a,b,x,y);return (x%b+b)%b;}
  9. int main()
  10. {
  11. cin>>n>>m>>l;
  12. cout<<multi(l,inv(fpow(2,m),n+1));
  13. return 0;
  14. }

【BZOJ1965】[AHOI2005]洗牌(数论)的更多相关文章

  1. bzoj1965 [Ahoi2005]洗牌

    Description 为了表彰小联为Samuel星球的探险所做出的贡献,小联被邀请参加Samuel星球近距离载人探险活动. 由于Samuel星球相当遥远,科学家们要在飞船中度过相当长的一段时间,小联 ...

  2. [BZOJ1965][AHOI2005] 洗牌 - 扩展欧几里得

    题目描述 为了表彰小联为Samuel星球的探险所做出的贡献,小联被邀请参加Samuel星球近距离载人探险活动. 由于Samuel星球相当遥远,科学家们要在飞船中度过相当长的一段时间,小联提议用扑克牌打 ...

  3. [luogu2054 AHOI2005] 洗牌 (数论)

    传送门 Solution 我们考虑每一步牌的变化: 前半部分的牌位置*2 后半部分的牌位置*2-n-1 那么我们可以看做是\(x\times 2^m\equiv l \pmod n\) 于是求个逆元就 ...

  4. [luogu P2054] [AHOI2005]洗牌

    [luogu P2054] [AHOI2005]洗牌 题目描述 为了表彰小联为Samuel星球的探险所做出的贡献,小联被邀请参加Samuel星球近距离载人探险活动. 由于Samuel星球相当遥远,科学 ...

  5. P2054 [AHOI2005]洗牌

    P2054 [AHOI2005]洗牌 题目描述 为了表彰小联为Samuel星球的探险所做出的贡献,小联被邀请参加Samuel星球近距离载人探险活动. 由于Samuel星球相当遥远,科学家们要在飞船中度 ...

  6. 洛谷——P2054 [AHOI2005]洗牌(扩展欧几里得,逆元)

    P2054 [AHOI2005]洗牌 扩展欧拉定理求逆元 $1 2 3 4 5 6$$4 1 5 2 6 3$$2 4 6 1 3 5$$1 2 3 4 5 6$ 手推一下样例,你就会发现是有规律的: ...

  7. 【bzoj1965】: [Ahoi2005]SHUFFLE 洗牌 数论-快速幂-扩展欧几里得

    [bzoj1965]: [Ahoi2005]SHUFFLE 洗牌 观察发现第x张牌 当x<=n/2 x=2x 当x>n/2 x=2x-n-1 好像就是 x=2x mod (n+1)  就好 ...

  8. BZOJ 1965: [Ahoi2005]SHUFFLE 洗牌( 数论 )

    对于第x个数, 下一轮它会到位置p. 当x<=N/2, p = x*2 当x>N/2, p = x*2%(N+1) 所以p = x*2%(N+1) 设一开始的位置为t, 那么t*2M%(N ...

  9. B1965 [Ahoi2005]SHUFFLE 洗牌 数论

    这个题的规律很好找,就是奇数直接除二,偶数除二加n/2.把这个规律整理一下就是(x * 2) % (n + 1),然后就直接求逆元就行了.一直30分的原因是qpow函数传参的时候用的int,然而变量是 ...

随机推荐

  1. [Usaco2012 Dec]First! BZOJ3012

    分析: 其实我们可以很容易的想到,如果一个串是另一个串的子串,那么必定长的那个串不可能是字典序最小的串.其次,如果一个串为了使他成为字典序最小的串儿出现了矛盾的情况,那么也不可能是字典序最小的串.那么 ...

  2. 大数据入门第十四天——Hbase详解(二)基本概念与命令、javaAPI

    一.hbase数据模型 完整的官方文档的翻译,参考:https://www.cnblogs.com/simple-focus/p/6198329.html 1.rowkey 与nosql数据库们一样, ...

  3. 20155321 《网络对抗》 Exp6 信息搜集与漏洞扫描

    20155321 <网络对抗> Exp6 信息搜集与漏洞扫描 实验内容 信息搜集 whois 在kali终端输入whois 网址,查看注册的公司.服务.注册省份.传真.电话等信息 dig或 ...

  4. windows系统中Dotnet core runtime 安装后,无法启动次程序,因为计算机中丢失api-ms-win-crt-runtime-l1-1-0.dll的解决方法

    因为dotnet core runtime依赖vc++2015,如果系统未安装vc++2015则会报上面的错误 解决方案:先下载安装vc++2015再安装dotnet core runtime, vc ...

  5. C++学习之从C到C++

    头文件的包含 包含头文件可以不加.h结尾,如iostream,一些常用的头文件在引用时可以不加.h后缀,并在开头增加c,如: #include <cstdio> #include < ...

  6. 原生 JS 实现手机验证码倒计时

    可以使用 pointer-events 来阻止元素成为鼠标事件的 target.html5 新增操作元素 class 类名的方式 classList. classList 方法 add(value): ...

  7. CSS布局的一些技巧

    max-width 通常使元素水平居中用的较多的方法为: #main { width: 600px; margin: 0 auto; } 但是,当浏览器窗口比元素的宽度还要窄时,浏览器会显示一个水平滚 ...

  8. [C#]使用Join与GroupJoin将两个集合进行关联与分组

    本文为原创文章.源代码为原创代码,如转载/复制,请在网页/代码处明显位置标明原文名称.作者及网址,谢谢! 本文使用的开发环境是VS2017及dotNet4.0,写此随笔的目的是给自己及新开发人员作为参 ...

  9. bodymovin实现将AE动画转换成HTML5动画

    做一个简单的记录,直接贴代码吧,主要还是设计师提供的那个json <!DOCTYPE html> <html> <head> <style> body ...

  10. pie的绕过方式

    目标程序下载 提取码:qk1y 1.检查程序开启了哪些安全保护机制 pie机制简介 PIE(position-independent executable) 是一个针对代码段.text, 数据段.*d ...