Description

  如果一棵树的所有非叶节点都恰好有n个儿子,那么我们称它为严格n元树。如果该树中最底层的节点深度为d
(根的深度为0),那么我们称它为一棵深度为d的严格n元树。例如,深度为2的严格2元树有三个,如下图:

  给出n, d,编程数出深度为d的n元树数目。

Input

  仅包含两个整数n, d( 0   <   n   <   =   32,   0  < =   d  < = 16)

Output

  仅包含一个数,即深度为d的n元树的数目。

Sample Input

【样例输入1】
2 2

【样例输入2】
2 3

【样例输入3】
3 5

Sample Output

【样例输出1】
3

【样例输出2】
21

【样例输出2】
58871587162270592645034001

 

Solution

令s[i]为深度不超过i的n元树的数量

显然的s[i]=s[i-1]^n+1

加上高精度即可

#include<stdio.h>
#include<stdlib.h>
#include<iostream>
#include<string>
#include<string.h>
#include<algorithm>
#include<math.h>
#include<queue>
#include<map>
#include<vector>
#include<set>
#define il inline
#define re register
using namespace std;
int n,d;
struct bignum{int len,s[];
} f[];
il bignum operator*(bignum a,bignum b){
bignum c;
memset(c.s,false,sizeof(c.s));
c.len=a.len+b.len-;
for(int i=;i<=a.len;i++)
for(int j=;j<=b.len;j++){
c.s[i+j-]+=a.s[i]*b.s[j];
c.s[i+j]+=c.s[i+j-]/;
c.s[i+j-]%=;
}
if(c.s[c.len+]>) c.len++;
return c;
}
il void operator++(bignum &a){
a.s[]++;
for(int i=;i<=a.len;i++){
a.s[i+]+=a.s[i]/;
a.s[i]%=;
}
if(a.s[a.len+]>) a.len++;
}
il bignum operator-(bignum a,bignum b){
bignum c;
memset(c.s,false,sizeof(c.s));
c.len=a.len;
for(int i=;i<=c.len;i++){
c.s[i]+=a.s[i]-b.s[i];
if(c.s[i]<) c.s[i+]--;
c.s[i]=(c.s[i]+)%;
}
return c;
}
il void print(bignum a){
printf("%d",a.s[a.len]);
for(int i=a.len-;i>;i--)
printf("%04d",a.s[i]);
printf("\n");
}
int main(){
scanf("%d%d",&d,&n);
if(d==){
cout<<"";return ;
}
f[].len=;f[].s[]=;
for(int i=;i<=n;i++){
f[i].len=;f[i].s[]=;
for(int j=;j<=d;j++){
f[i]=f[i]*f[i-];
// print(f[i]);
}
++f[i];
}
print(f[n]-f[n-]);
return ;
}

【bzoj1089】严格n元树的更多相关文章

  1. bzoj1089严格n元树——DP+高精度

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1089 f[d]为深度小于等于d的树的个数: 从根节点出发,有n个子树,乘法原理可以得到 f[ ...

  2. bzoj1089严格n元树

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1089 这是一种套路:记录“深度为 i ”的话,转移需要讨论许多情况:所以可以记录成“深度&l ...

  3. [bzoj1089]严格n元树

    设f[i]表示深度不超过i的方案数,那么有f[0]=1,$f[i]=f[i-1]^{n}+1$,然后用高精度即可(注意深度恰好为d还要用f[d]-f[d-1]才是答案) 1 #include<b ...

  4. 【BZOJ1089】[SCOI2003]严格n元树(高精度,动态规划)

    [BZOJ1089][SCOI2003]严格n元树(高精度,动态规划) 题面 BZOJ 洛谷 题解 设\(f[i]\)表示深度为\(i\)的\(n\)元树个数.然后我们每次加入一个根节点,然后枚举它的 ...

  5. [BZOJ1089][SCOI2003]严格n元树(递推+高精度)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1089 分析: 第一感觉可以用一个通式求出来,但是考虑一下很麻烦,不好搞的.很容易发现最 ...

  6. BZOJ1089: [SCOI2003]严格n元树

    1089: [SCOI2003]严格n元树 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 762  Solved: 387[Submit][Status ...

  7. BZOJ1089:[SCOI2003]严格n元树(DP,高精度)

    Description 如果一棵树的所有非叶节点都恰好有n个儿子,那么我们称它为严格n元树.如果该树中最底层的节点深度为d (根的深度为0),那么我们称它为一棵深度为d的严格n元树.例如,深度为2的严 ...

  8. BZOJ1089 [SCOI2003]严格n元树 【dp + 高精】

    Description 如果一棵树的所有非叶节点都恰好有n个儿子,那么我们称它为严格n元树.如果该树中最底层的节点深度为d (根的深度为0),那么我们称它为一棵深度为d的严格n元树.例如,深度为2的严 ...

  9. bzoj1089 [SCOI2003]严格n元树(dp+高精)

    1089: [SCOI2003]严格n元树 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1899  Solved: 954[Submit][Statu ...

随机推荐

  1. #define GPIOA ((GPIO_TypeDef *) GPIOA_BASE)

    ((GPIO_TypeDef *) GPIOA_BASE)表示将GPIOA_BASE强制转换为指针类型的结构体, #define GPIOA ((GPIO_TypeDef *) GPIOA_BASE) ...

  2. Mapreduce -- PageRank

    PageRank 简单理解为网页排名,但是网页是根据什么排名的,接下来就简单介绍一下. 举例: 假设网页 A 的内容中有网页 B,C 和 D 的链接,并且 A 的 PageRank的值为0.25. 那 ...

  3. struts2_文件上传的功能

    使用Struts内置的fileUpload拦截器(已默认配置)即可,设计的电商网站,提供用户头像上传的功能 1. 2. 3. 4. 5. 5.未使用拦截器 6.未使用filename 7. 8. 9.

  4. Sign in with the app-specific password you generated. If you forgot the app-specific password or need to create a new one, go to appleid.apple.com

    iOS打包报错信息如下:Sign in with the app-specific password you generated. If you forgot the app-specific pas ...

  5. 20155204《网络对抗》Exp 6 信息搜集与漏洞扫描

    20155204<网络对抗>Exp 6 信息搜集与漏洞扫描 一.实验后回答问题 1.哪些组织负责DNS,IP的管理. 互联网名称与数字地址分配机构,简称ICANN机构,决定了域名和IP地址 ...

  6. EZ 2018 05 04 NOIP2018 模拟赛(十二)

    这次的试卷应该是激励我们一下的,链接 然后大家的分数就都很高,然后我就210被一群秒A T2的240大佬爆踩 掉了5rating但Rank竟然发杀了 X_o_r dalao && YZ ...

  7. 洛咕 P4474 王者之剑

    宝石只能在偶数秒取到,假设有一个宝石在奇数秒取到了,那么上一秒是偶数秒,在上一秒的时候这里的宝石就没了. 相邻的两个宝石不能同时取,很显然,先取一块,那么这是偶数秒,取完了这一块之后相邻的都没了. 只 ...

  8. mybatis 异常 too many connections 解决方案 mysql

    参考: https://blog.csdn.net/u011628250/article/details/54017481 https://www.cnblogs.com/baby123/p/5710 ...

  9. 新的旅程:NodeJS - 环境篇

    用ASP.NET MVC好多年了,还记得当初为MVC所倡导的"DRY"理念所感染,为Razor的简单而震撼.随着MVC的成熟反而让我觉得似乎渐渐地走入了微软营造的一种高技术的牢笼. ...

  10. PAT题解-1118. Birds in Forest (25)-(并查集模板题)

    如题... #include <iostream> #include <cstdio> #include <algorithm> #include <stri ...