版权声明:本文为博主原创文章,欢迎转载,注明地址。 https://blog.csdn.net/program_developer/article/details/79430119

一、LRN技术介绍:

Local Response Normalization(LRN)技术主要是深度学习训练时的一种提高准确度的技术方法。其中caffe、tensorflow等里面是很常见的方法,其跟激活函数是有区别的,LRN一般是在激活、池化后进行的一种处理方法。LRN归一化技术首次在AlexNet模型中提出这个概念。

AlexNet将LeNet的思想发扬光大,把CNN的基本原理应用到了很深很宽的网络中。AlexNet主要使用到的新技术点如下。

(1)成功使用ReLU作为CNN的激活函数,并验证其效果在较深的网络超过了Sigmoid,成功解决了Sigmoid在网络较深时的梯度弥散问题。虽然ReLU激活函数在很久之前就被提出了,但是直到AlexNet的出现才将其发扬光大。

(2)训练时使用Dropout随机忽略一部分神经元,以避免模型过拟合。Dropout虽有单独的论文论述,但是AlexNet将其实用化,通过实践证实了它的效果。在AlexNet中主要是最后几个全连接层使用了Dropout。

(3)在CNN中使用重叠的最大池化。此前CNN中普遍使用平均池化,AlexNet全部使用最大池化,避免平均池化的模糊化效果。并且AlexNet中提出让步长比池化核的尺寸小,这样池化层的输出之间会有重叠和覆盖,提升了特征的丰富性。

(4)提出了LRN层,对局部神经元的活动创建竞争机制,使得其中响应比较大的值变得相对更大,并抑制其他反馈较小的神经元,增强了模型的泛化能力。

二、为什么要有局部相应归一化(Local Response Normalization)?

三、LRN计算公式的介绍

Hinton在2012年的Alexnet网络中给出其具体的计算公式如下:

这个公式中的a表示卷积层(包括卷积操作和池化操作)后的输出结果,这个输出结果的结构是一个四维数组[batch,height,width,channel],这里可以简单解释一下,batch就是批次数(每一批为一张图片),height就是图片高度,width就是图片宽度,channel就是通道数可以理解成一批图片中的某一个图片经过卷积操作后输出的神经元个数(或是理解成处理后的图片深度)。ai(x,y)表示在这个输出结构中的一个位置[a,b,c,d],可以理解成在某一张图中的某一个通道下的某个高度和某个宽度位置的点,即第a张图的第d个通道下的高度为b宽度为c的点。论文公式中的N表示通道数(channel)。a,n/2,k,α,β分别表示函数中的input,depth_radius,bias,alpha,beta,其中n/2,k,α,β都是自定义的,特别注意一下∑叠加的方向是沿着通道方向的,即每个点值的平方和是沿着a中的第3维channel方向的,也就是一个点同方向的前面n/2个通道(最小为第0个通道)和后n/2个通道(最大为第d-1个通道)的点的平方和(共n+1个点)。而函数的英文注解中也说明了把input当成是d个3维的矩阵,说白了就是把input的通道数当作3维矩阵的个数,叠加的方向也是在通道方向。

公式看上去比较复杂,但理解起来非常简单。i表示第i个核在位置(x,y)运用激活函数ReLU后的输出,n是同一位置上临近的kernal map的数目,N是kernal的总数。参数K,n,alpha,belta都是超参数,一般设置k=2,n=5,aloha=1*e-4,beta=0.75。

整理参考文章:

http://blog.csdn.net/hduxiejun/article/details/70570086

http://blog.csdn.net/yangdashi888/article/details/77918311


3.后期争议

在2015年 Very Deep Convolutional Networks for Large-Scale Image Recognition.提到LRN基本没什么用。

在Alexnet模型中首次提出这个概念。

参考文献:

[LRN]:ImageNet Classification with Deep Convolutional Neural Networks
---------------------
作者:CrazyVertigo
来源:CSDN
原文:https://blog.csdn.net/hduxiejun/article/details/70570086
版权声明:本文为博主原创文章,转载请附上博文链接!

局部响应归一化(Local Response Normalization,LRN)的更多相关文章

  1. caffe中的Local Response Normalization (LRN)有什么用,和激活函数区别

    http://stats.stackexchange.com/questions/145768/importance-of-local-response-normalization-in-cnn ca ...

  2. 在AlexNet中LRN 局部响应归一化的理

    在AlexNet中LRN 局部响应归一化的理 一.LRN技术介绍: Local Response Normalization(LRN)技术主要是深度学习训练时的一种提高准确度的技术方法.其中caffe ...

  3. Local Response Normalization 60 million parameters and 500,000 neurons

    CNN是工具,在图像识别中是发现图像中待识别对象的特征的工具,是剔除对识别结果无用信息的工具. ImageNet Classification with Deep Convolutional Neur ...

  4. Local Response Normalization作用——对局部神经元的活动创建竞争机制,使得其中响应比较大的值变得相对更大,并抑制其他反馈较小的神经元,增强了模型的泛化能力

    AlexNet将LeNet的思想发扬光大,把CNN的基本原理应用到了很深很宽的网络中.AlexNet主要使用到的新技术点如下. (1)成功使用ReLU作为CNN的激活函数,并验证其效果在较深的网络超过 ...

  5. 深度学习原理与框架-Tensorflow卷积神经网络-cifar10图片分类(代码) 1.tf.nn.lrn(局部响应归一化操作) 2.random.sample(在列表中随机选值) 3.tf.one_hot(对标签进行one_hot编码)

    1.tf.nn.lrn(pool_h1, 4, bias=1.0, alpha=0.001/9.0, beta=0.75) # 局部响应归一化,使用相同位置的前后的filter进行响应归一化操作 参数 ...

  6. LRN(local response normalization--局部响应标准化)

    LRN全称为Local Response Normalization,即局部响应归一化层,LRN函数类似DROPOUT和数据增强作为relu激励之后防止数据过拟合而提出的一种处理方法.这个函数很少使用 ...

  7. 归一化交叉相关Normalization cross correlation (NCC)

    归一化交叉相关Normalization cross correlation (NCC) 相关系数,图像匹配 NCC正如其名字,是用来描述两个目标的相关程度的,也就是说可以用来刻画目标间的相似性.一般 ...

  8. theano 实现图像局部对比度归一化

    很多时候我们需要对图像进行局部对比度归一化,比如分块CNN的预处理阶段.theano对此提供了一些比较方便的操作. 局部归一化的一种简单形式为: 其中μ和σ分别为局部(例如3x3的小块)的均值和标准差 ...

  9. HMAC在“挑战/响应”(Challenge/Response)身份认证的应用

    HMAC的一个典型应用是用在"挑战/响应"(Challenge/Response)身份认证中. 认证流程 (1) 先由客户端向服务器发出一个验证请求. (2) 服务器接到此请求后生 ...

随机推荐

  1. Redis学习笔记11--Redis分布式

    Redis-2.4.15目前没有提供集群的功能,Redis作者在博客中说将在3.0中实现集群机制.目前Redis实现集群的方法主要是采用一致性哈稀分片(Shard),将不同的key分配到不同的redi ...

  2. JAVA 类和对象基础知识详解

    /*文章中用到的代码只是一部分,需要源码的可通过邮箱联系我 1978702969@qq.com*/ 和C++一样,JAVA也是一门面向对象的语言,其基础和核心是类和对象.而面向对象的思想是来源与显示生 ...

  3. 浅析Entity FrameWork性能优化

    浅析EF性能优化 1.       数据Load 延迟加载:当实体第一次读取时,相关数据没有加载:当第一次试图访问导航属性时,所需的导航数据自动加载,EF默认使用这种方式加载数据,尽量使用预先加载和显 ...

  4. 循序渐进学.Net Core Web Api开发系列【0】:序言与目录

    一.序言 我大约在2003年时候开始接触到.NET,最初在.NET framework 1.1版本下写过代码,曾经做过WinForm和ASP.NET开发.大约在2010年的时候转型JAVA环境,这么多 ...

  5. [代码审计]云ec电商系统代码审计

    0x00 前言 看了一下博客内最新的文章,竟然是3月28号的,一个多月没写文章了,博客都长草了. 主要是临近毕业,事情繁多,也没有啥时间和心情静下来写.. 不过现在的话,毕业的东西告一段落了,几乎没啥 ...

  6. Android-Binder原理浅析

    Android-Binder原理浅析 学习自 <Android开发艺术探索> 写在前头 在上一章,我们简单的了解了一下Binder并且通过 AIDL完成了一个IPC的DEMO.你可能会好奇 ...

  7. IEnumerable<T>

    IEnumerable 饮水思源 <C#本质论> Overview 根据定义,.Net 的中集合,本质上是一个类,它最起码实现了IEnumeraable 或者非泛型的IEnumerable ...

  8. ARP欺骗防御工具arpon

    ARP欺骗防御工具arpon   ARP欺骗是局域网最为常见的中人间攻击实施方式.Kali Linux提供一款专用防御工具arpon.该工具提供三种防御方式,如静态ARP防御SARPI.动态ARP防御 ...

  9. 每日踩坑 2018-11-26 MVC Razor ActionLink 生成的URL中多生成了一个参数 ?length=n

    RouteConfig 的路由注册如下: routes.MapRoute( name: "Default", url: "{controller}/{action}&qu ...

  10. [HDU4123]Bob’s Race

    题目大意:给定一棵$n$个点并且有边权的树,每个点的权值为该点能走的最远长度,并输入$m$个询问,每次询问最多有多少个编号连续的点,他们的最大最小点权差小于等于$Q$. 思路:两趟DP(DFS)求出每 ...