Android View 深度分析requestLayout、invalidate与postInvalidate
前言
前几篇文章中,笔者对View的三大工作流程进行了详细分析,而这篇文章则详细讲述与三大工作流程密切相关的两个方法,分别是requestLayout和invalidate,如果对Viwe的三个工作流程不熟悉的读者,可以先看看前几篇文章,以便能更容易理解这篇文章的内容。
requestLayout
当我们动态移动一个View的位置,或者View的大小、形状发生了变化的时候,我们可以在view中调用这个方法,即:
view.requestLayout();
那么该方法的作用是什么呢?
从方法名字可以知道,“请求布局”,那就是说,如果调用了这个方法,那么对于一个子View来说,应该会重新进行布局流程。但是,真实情况略有不同,如果子View调用了这个方法,其实会从View树重新进行一次测量、布局、绘制这三个流程,最终就会显示子View的最终情况。那么,这个方法是怎么实现的呢?我们从源码角度进行解析。
首先,我们看View#requestLayout方法:
/**
* Call this when something has changed which has invalidated the
* layout of this view. This will schedule a layout pass of the view
* tree. This should not be called while the view hierarchy is currently in a layout
* pass ({@link #isInLayout()}. If layout is happening, the request may be honored at the
* end of the current layout pass (and then layout will run again) or after the current
* frame is drawn and the next layout occurs.
*
* <p>Subclasses which override this method should call the superclass method to
* handle possible request-during-layout errors correctly.</p>
*/
//从源码注释可以看出,如果当前View在请求布局的时候,View树正在进行布局流程的话,
//该请求会延迟到布局流程完成后或者绘制流程完成且下一次布局发现的时候再执行。
@CallSuper
public void requestLayout() {
if (mMeasureCache != null) mMeasureCache.clear();
if (mAttachInfo != null && mAttachInfo.mViewRequestingLayout == null) {
// Only trigger request-during-layout logic if this is the view requesting it,
// not the views in its parent hierarchy
ViewRootImpl viewRoot = getViewRootImpl();
if (viewRoot != null && viewRoot.isInLayout()) {
if (!viewRoot.requestLayoutDuringLayout(this)) {
return;
}
}
mAttachInfo.mViewRequestingLayout = this;
}
//为当前view设置标记位 PFLAG_FORCE_LAYOUT
mPrivateFlags |= PFLAG_FORCE_LAYOUT;
mPrivateFlags |= PFLAG_INVALIDATED;
if (mParent != null && !mParent.isLayoutRequested()) {
//向父容器请求布局
mParent.requestLayout();
}
if (mAttachInfo != null && mAttachInfo.mViewRequestingLayout == this) {
mAttachInfo.mViewRequestingLayout = null;
}
}
在requestLayout方法中,首先先判断当前View树是否正在布局流程,接着为当前子View设置标记位,该标记位的作用就是标记了当前的View是需要进行重新布局的,接着调用mParent.requestLayout方法,这个十分重要,因为这里是向父容器请求布局,即调用父容器的requestLayout方法,为父容器添加PFLAG_FORCE_LAYOUT标记位,而父容器又会调用它的父容器的requestLayout方法,即requestLayout事件层层向上传递,直到DecorView,即根View,而根View又会传递给ViewRootImpl,也即是说子View的requestLayout事件,最终会被ViewRootImpl接收并得到处理。纵观这个向上传递的流程,其实是采用了责任链模式,即不断向上传递该事件,直到找到能处理该事件的上级,在这里,只有ViewRootImpl能够处理requestLayout事件。
在ViewRootImpl中,重写了requestLayout方法,我们看看这个方法,ViewRootImpl#requestLayout:
@Override
public void requestLayout() {
if (!mHandlingLayoutInLayoutRequest) {
checkThread();
mLayoutRequested = true;
scheduleTraversals();
}
}
在这里,调用了scheduleTraversals方法,这个方法是一个异步方法,最终会调用到ViewRootImpl#performTraversals方法,这也是View工作流程的核心方法,在这个方法内部,分别调用measure、layout、draw方法来进行View的三大工作流程,对于三大工作流程,前几篇文章已经详细讲述了,这里再做一点补充说明。
先看View#measure方法:
public final void measure(int widthMeasureSpec, int heightMeasureSpec) {
...
if ((mPrivateFlags & PFLAG_FORCE_LAYOUT) == PFLAG_FORCE_LAYOUT ||
widthMeasureSpec != mOldWidthMeasureSpec ||
heightMeasureSpec != mOldHeightMeasureSpec) {
...
if (cacheIndex < 0 || sIgnoreMeasureCache) {
// measure ourselves, this should set the measured dimension flag back
onMeasure(widthMeasureSpec, heightMeasureSpec);
mPrivateFlags3 &= ~PFLAG3_MEASURE_NEEDED_BEFORE_LAYOUT;
}
...
mPrivateFlags |= PFLAG_LAYOUT_REQUIRED;
}
}
首先是判断一下标记位,如果当前View的标记位为PFLAG_FORCE_LAYOUT,那么就会进行测量流程,调用onMeasure,对该View进行测量,接着最后为标记位设置为PFLAG_LAYOUT_REQUIRED,这个标记位的作用就是在View的layout流程中,如果当前View设置了该标记位,则会进行布局流程。具体可以看如下View#layout源码:
public void layout(int l, int t, int r, int b) {
...
//判断标记位是否为PFLAG_LAYOUT_REQUIRED,如果有,则对该View进行布局
if (changed || (mPrivateFlags & PFLAG_LAYOUT_REQUIRED) == PFLAG_LAYOUT_REQUIRED) {
onLayout(changed, l, t, r, b);
//onLayout方法完成后,清除PFLAG_LAYOUT_REQUIRED标记位
mPrivateFlags &= ~PFLAG_LAYOUT_REQUIRED;
ListenerInfo li = mListenerInfo;
if (li != null && li.mOnLayoutChangeListeners != null) {
ArrayList<OnLayoutChangeListener> listenersCopy =
(ArrayList<OnLayoutChangeListener>)li.mOnLayoutChangeListeners.clone();
int numListeners = listenersCopy.size();
for (int i = 0; i < numListeners; ++i) {
listenersCopy.get(i).onLayoutChange(this, l, t, r, b, oldL, oldT, oldR, oldB);
}
}
}
//最后清除PFLAG_FORCE_LAYOUT标记位
mPrivateFlags &= ~PFLAG_FORCE_LAYOUT;
mPrivateFlags3 |= PFLAG3_IS_LAID_OUT;
}
那么到目前为止,requestLayout的流程便完成了。
小结:子View调用requestLayout方法,会标记当前View及父容器,同时逐层向上提交,直到ViewRootImpl处理该事件,ViewRootImpl会根据标记调用三大流程,从measure开始,对于每一个含有标记位的view及其子View都会进行测量、布局,绘制。其中测量,布局一定会执行,但是如果测量和布局结果发生改变时绘制方法才会执行。也就是如果测量,绘制结果跟之前没有变化,绘制过程不会执行。
invalidate
该方法的调用会引起View树的重绘,常用于内部调用(比如 setVisiblity())或者需要刷新界面的时候,需要在主线程(即UI线程)中调用该方法。那么我们来分析一下它的实现。
首先,一个子View调用该方法,那么我们直接看View#invalidate方法:
public void invalidate() {
invalidate(true);
}
void invalidate(boolean invalidateCache) {
invalidateInternal(0, 0, mRight - mLeft, mBottom - mTop, invalidateCache, true);
}
void invalidateInternal(int l, int t, int r, int b, boolean invalidateCache,
boolean fullInvalidate) {
if (mGhostView != null) {
mGhostView.invalidate(true);
return;
}
//这里判断该子View是否可见或者是否处于动画中
if (skipInvalidate()) {
return;
}
//根据View的标记位来判断该子View是否需要重绘,假如View没有任何变化,那么就不需要重绘
if ((mPrivateFlags & (PFLAG_DRAWN | PFLAG_HAS_BOUNDS)) == (PFLAG_DRAWN | PFLAG_HAS_BOUNDS)
|| (invalidateCache && (mPrivateFlags & PFLAG_DRAWING_CACHE_VALID) == PFLAG_DRAWING_CACHE_VALID)
|| (mPrivateFlags & PFLAG_INVALIDATED) != PFLAG_INVALIDATED
|| (fullInvalidate && isOpaque() != mLastIsOpaque)) {
if (fullInvalidate) {
mLastIsOpaque = isOpaque();
mPrivateFlags &= ~PFLAG_DRAWN;
}
//设置PFLAG_DIRTY标记位
mPrivateFlags |= PFLAG_DIRTY;
if (invalidateCache) {
mPrivateFlags |= PFLAG_INVALIDATED;
mPrivateFlags &= ~PFLAG_DRAWING_CACHE_VALID;
}
// Propagate the damage rectangle to the parent view.
//把需要重绘的区域传递给父容器
final AttachInfo ai = mAttachInfo;
final ViewParent p = mParent;
if (p != null && ai != null && l < r && t < b) {
final Rect damage = ai.mTmpInvalRect;
damage.set(l, t, r, b);
//调用父容器的方法,向上传递事件
p.invalidateChild(this, damage);
}
...
}
}
可以看出,invalidate有多个重载方法,但最终都会调用invalidateInternal方法,在这个方法内部,进行了一系列的判断,判断View是否需要重绘,接着为该View设置标记位,然后把需要重绘的区域传递给父容器,即调用父容器的invalidateChild方法。
接着我们看ViewGroup#invalidateChild:
/**
* Don't call or override this method. It is used for the implementation of
* the view hierarchy.
*/
public final void invalidateChild(View child, final Rect dirty) {
//设置 parent 等于自身
ViewParent parent = this;
final AttachInfo attachInfo = mAttachInfo;
if (attachInfo != null) {
// If the child is drawing an animation, we want to copy this flag onto
// ourselves and the parent to make sure the invalidate request goes
// through
final boolean drawAnimation = (child.mPrivateFlags & PFLAG_DRAW_ANIMATION)
== PFLAG_DRAW_ANIMATION;
// Check whether the child that requests the invalidate is fully opaque
// Views being animated or transformed are not considered opaque because we may
// be invalidating their old position and need the parent to paint behind them.
Matrix childMatrix = child.getMatrix();
final boolean isOpaque = child.isOpaque() && !drawAnimation &&
child.getAnimation() == null && childMatrix.isIdentity();
// Mark the child as dirty, using the appropriate flag
// Make sure we do not set both flags at the same time
int opaqueFlag = isOpaque ? PFLAG_DIRTY_OPAQUE : PFLAG_DIRTY;
if (child.mLayerType != LAYER_TYPE_NONE) {
mPrivateFlags |= PFLAG_INVALIDATED;
mPrivateFlags &= ~PFLAG_DRAWING_CACHE_VALID;
}
//储存子View的mLeft和mTop值
final int[] location = attachInfo.mInvalidateChildLocation;
location[CHILD_LEFT_INDEX] = child.mLeft;
location[CHILD_TOP_INDEX] = child.mTop;
...
do {
View view = null;
if (parent instanceof View) {
view = (View) parent;
}
if (drawAnimation) {
if (view != null) {
view.mPrivateFlags |= PFLAG_DRAW_ANIMATION;
} else if (parent instanceof ViewRootImpl) {
((ViewRootImpl) parent).mIsAnimating = true;
}
}
// If the parent is dirty opaque or not dirty, mark it dirty with the opaque
// flag coming from the child that initiated the invalidate
if (view != null) {
if ((view.mViewFlags & FADING_EDGE_MASK) != 0 &&
view.getSolidColor() == 0) {
opaqueFlag = PFLAG_DIRTY;
}
if ((view.mPrivateFlags & PFLAG_DIRTY_MASK) != PFLAG_DIRTY) {
//对当前View的标记位进行设置
view.mPrivateFlags = (view.mPrivateFlags & ~PFLAG_DIRTY_MASK) | opaqueFlag;
}
}
//调用ViewGrup的invalidateChildInParent,如果已经达到最顶层view,则调用ViewRootImpl
//的invalidateChildInParent。
parent = parent.invalidateChildInParent(location, dirty);
if (view != null) {
// Account for transform on current parent
Matrix m = view.getMatrix();
if (!m.isIdentity()) {
RectF boundingRect = attachInfo.mTmpTransformRect;
boundingRect.set(dirty);
m.mapRect(boundingRect);
dirty.set((int) (boundingRect.left - 0.5f),
(int) (boundingRect.top - 0.5f),
(int) (boundingRect.right + 0.5f),
(int) (boundingRect.bottom + 0.5f));
}
}
} while (parent != null);
}
}
可以看到,在该方法内部,先设置当前视图的标记位,接着有一个do…while…循环,该循环的作用主要是不断向上回溯父容器,求得父容器和子View需要重绘的区域的并集(dirty)。当父容器不是ViewRootImpl的时候,调用的是ViewGroup的invalidateChildInParent方法,我们来看看这个方法,ViewGroup#invalidateChildInParent:
public ViewParent invalidateChildInParent(final int[] location, final Rect dirty) {
if ((mPrivateFlags & PFLAG_DRAWN) == PFLAG_DRAWN ||
(mPrivateFlags & PFLAG_DRAWING_CACHE_VALID) == PFLAG_DRAWING_CACHE_VALID) {
if ((mGroupFlags & (FLAG_OPTIMIZE_INVALIDATE | FLAG_ANIMATION_DONE)) !=
FLAG_OPTIMIZE_INVALIDATE) {
//将dirty中的坐标转化为父容器中的坐标,考虑mScrollX和mScrollY的影响
dirty.offset(location[CHILD_LEFT_INDEX] - mScrollX,
location[CHILD_TOP_INDEX] - mScrollY);
if ((mGroupFlags & FLAG_CLIP_CHILDREN) == 0) {
//求并集,结果是把子视图的dirty区域转化为父容器的dirty区域
dirty.union(0, 0, mRight - mLeft, mBottom - mTop);
}
final int left = mLeft;
final int top = mTop;
if ((mGroupFlags & FLAG_CLIP_CHILDREN) == FLAG_CLIP_CHILDREN) {
if (!dirty.intersect(0, 0, mRight - left, mBottom - top)) {
dirty.setEmpty();
}
}
mPrivateFlags &= ~PFLAG_DRAWING_CACHE_VALID;
//记录当前视图的mLeft和mTop值,在下一次循环中会把当前值再向父容器的坐标转化
location[CHILD_LEFT_INDEX] = left;
location[CHILD_TOP_INDEX] = top;
if (mLayerType != LAYER_TYPE_NONE) {
mPrivateFlags |= PFLAG_INVALIDATED;
}
//返回当前视图的父容器
return mParent;
}
...
}
return null;
}
可以看出,这个方法做的工作主要有:调用offset方法,把当前dirty区域的坐标转化为父容器中的坐标,接着调用union方法,把子dirty区域与父容器的区域求并集,换句话说,dirty区域变成父容器区域。最后返回当前视图的父容器,以便进行下一次循环。
回到上面所说的do…while…循环,由于不断向上调用父容器的方法,到最后会调用到ViewRootImpl的invalidateChildInParent方法,我们来看看它的源码,ViewRootImpl#invalidateChildInParent:
@Override
public ViewParent invalidateChildInParent(int[] location, Rect dirty) {
checkThread();
if (DEBUG_DRAW) Log.v(TAG, "Invalidate child: " + dirty);
if (dirty == null) {
invalidate();
return null;
} else if (dirty.isEmpty() && !mIsAnimating) {
return null;
}
if (mCurScrollY != 0 || mTranslator != null) {
mTempRect.set(dirty);
dirty = mTempRect;
if (mCurScrollY != 0) {
dirty.offset(0, -mCurScrollY);
}
if (mTranslator != null) {
mTranslator.translateRectInAppWindowToScreen(dirty);
}
if (mAttachInfo.mScalingRequired) {
dirty.inset(-1, -1);
}
}
final Rect localDirty = mDirty;
if (!localDirty.isEmpty() && !localDirty.contains(dirty)) {
mAttachInfo.mSetIgnoreDirtyState = true;
mAttachInfo.mIgnoreDirtyState = true;
}
// Add the new dirty rect to the current one
localDirty.union(dirty.left, dirty.top, dirty.right, dirty.bottom);
// Intersect with the bounds of the window to skip
// updates that lie outside of the visible region
final float appScale = mAttachInfo.mApplicationScale;
final boolean intersected = localDirty.intersect(0, 0,
(int) (mWidth * appScale + 0.5f), (int) (mHeight * appScale + 0.5f));
if (!intersected) {
localDirty.setEmpty();
}
if (!mWillDrawSoon && (intersected || mIsAnimating)) {
scheduleTraversals();
}
return null;
}
可以看出,该方法所做的工作与上面的差不多,都进行了offset和union对坐标的调整,然后把dirty区域的信息保存在mDirty中,最后调用了scheduleTraversals方法,触发View的工作流程,由于没有添加measure和layout的标记位,因此measure、layout流程不会执行,而是直接从draw流程开始。
好了,现在总结一下invalidate方法,当子View调用了invalidate方法后,会为该View添加一个标记位,同时不断向父容器请求刷新,父容器通过计算得出自身需要重绘的区域,直到传递到ViewRootImpl中,最终触发performTraversals方法,进行开始View树重绘流程(只绘制需要重绘的视图)。
postInvalidate
这个方法与invalidate方法的作用是一样的,都是使View树重绘,但两者的使用条件不同,postInvalidate是在非UI线程中调用,invalidate则是在UI线程中调用。
接下来我们分析postInvalidate方法的原理。
首先看View#postInvalidate:
public void postInvalidate() {
postInvalidateDelayed(0);
}
public void postInvalidateDelayed(long delayMilliseconds) {
// We try only with the AttachInfo because there's no point in invalidating
// if we are not attached to our window
final AttachInfo attachInfo = mAttachInfo;
if (attachInfo != null) {
attachInfo.mViewRootImpl.dispatchInvalidateDelayed(this, delayMilliseconds);
}
}
由以上代码可以看出,只有attachInfo不为null的时候才会继续执行,即只有确保视图被添加到窗口的时候才会通知view树重绘,因为这是一个异步方法,如果在视图还未被添加到窗口就通知重绘的话会出现错误,所以这样要做一下判断。接着调用了ViewRootImpl#dispatchInvalidateDelayed方法:
public void dispatchInvalidateDelayed(View view, long delayMilliseconds) {
Message msg = mHandler.obtainMessage(MSG_INVALIDATE, view);
mHandler.sendMessageDelayed(msg, delayMilliseconds);
}
这里用了Handler,发送了一个异步消息到主线程,显然这里发送的是MSG_INVALIDATE,即通知主线程刷新视图,具体的实现逻辑我们可以看看该mHandler的实现:
final ViewRootHandler mHandler = new ViewRootHandler();
final class ViewRootHandler extends Handler {
@Override
public String getMessageName(Message message) {
....
}
@Override
public void handleMessage(Message msg) {
switch (msg.what) {
case MSG_INVALIDATE:
((View) msg.obj).invalidate();
break;
...
}
}
}
可以看出,参数message传递过来的正是View视图的实例,然后直接调用了invalidate方法,然后继续invalidate流程。
到目前为止,对于常用的刷新视图的方法已经分析完毕。最后以一幅流程图来说明requestLayout、invalidate的区别:
一般来说,如果View确定自身不再适合当前区域,比如说它的LayoutParams发生了改变,需要父布局对其进行重新测量、布局、绘制这三个流程,往往使用requestLayout。而invalidate则是刷新当前View,使当前View进行重绘,不会进行测量、布局流程,因此如果View只需要重绘而不需要测量,布局的时候,使用invalidate方法往往比requestLayout方法更高效。最后,感谢你们的阅读,希望这篇文章给你们带来帮助。
Android View 深度分析requestLayout、invalidate与postInvalidate的更多相关文章
- Android view中的requestLayout和invalidate方法
Android view中的requestLayout和invalidate方法 requestLayout:当view确定自身已经不再适合现有的区域时,该view本身调用这个方法要求parent v ...
- Android开发 View的UI刷新Invalidate和postInvalidate
Invalidate 正常刷新 /** * 使整个视图无效.如果视图可见, * {@link #onDraw(android.graphics.Canvas)} 调用此方法后将在后续的UI刷新里调用o ...
- requestLayout, invalidate和postInvalidate的异同
requestLayout 当一个VIEW的布局属性发生了变化的时候,可以调用该方法,让父VIEW调用onmeasure 和onlayout重新定位该view的位置,需要在UI线程调用 invalid ...
- 1.Android常见异常:android.view.WindowLeaked 分析以及解决办法
在项目中遇到WindowManager: Activity has leaked window问题,其实在stackoverflow.com可以找到详细答案:http://stackoverflow ...
- Android中View绘制流程以及invalidate()等相关方法分析
[原文]http://blog.csdn.net/qinjuning 整个View树的绘图流程是在ViewRoot.java类的performTraversals()函数展开的,该函数做的执行过程可简 ...
- Android中View绘制流程以及invalidate()等相关方法分析(转载的文章,出处在正文已表明)
转载请注明出处:http://blog.csdn.net/qinjuning 前言: 本文是我读<Android内核剖析>第13章----View工作原理总结而成的,在此膜拜下作者 .同时 ...
- Android中View绘制流程以及invalidate()等相关方法分析(转)
转自:http://blog.csdn.net/qinjuning 前言: 本文是我读<Android内核剖析>第13章----View工作原理总结而成的,在此膜拜下作者 .同时真挚地向渴 ...
- android: requestLayout(), invalidate(), postInvalidate() 方法区别
一.invalidate和postInvalidate 这两个方法都是在重绘当前控件的时候调用的.invalidate在UI线程中调用,postInvalidate在非UI线程中调用.因为androi ...
- Android View重绘和更新: invalidate和requestLayout 总结的不错 赶紧复制。。哈哈
总述:View有两个很重要的方法:invalidate和requestLayout,常用于View重绘和更新. Invalidate:To farce a view to draw,call inva ...
随机推荐
- MySQL更新优化(转)
通常情况下,当访问某张表的时候,读取者首先必须获取该表的锁,如果有写入操作到达,那么写入者一直等待读取者完成操作(查询开始之后就不能中断,因此允许读取者完成操作).当读取者完成对表的操作的时候,锁就会 ...
- servlet中请求转发(forword)与重定向(sendredirect)
请求转发和重定向 request.setAttribute("test","hello"); request.getRequestDispacther(&quo ...
- C++17尝鲜:变长 using 声明
using 声明 先来看 using 声明在类中的应用: 代码1 #include <iostream> using namespace std; struct A { void f(in ...
- [Shell]Shell脚本的执行方式
---------------------------------------------------------------------------------------------------- ...
- sqlalchemy 学习--单表操作
以下所有代码片段都使用了统一的引用,该引用如下: from sqlalchemy import create_engine, ForeignKey from sqlalchemy.ext.declar ...
- 计算平面面积和斜面面积-ArcGIS案例学习笔记
计算平面面积和斜面面积-ArcGIS案例学习笔记 联系方式:谢老师,135_4855_4328,xiexiaokui#139.com 数据:实验数据\Chp8\Ex5\demTif.tif 平面面积= ...
- python批量操作Linux服务器脚本,key登录(执行命令、上传、下载)(二)
-*- 2 #批量操作linux服务器(执行命令,上传,下载) 3 #!/usr/bin/python 4 import paramiko 5 import datetime ...
- Unity3D初学之2D动画制
作者:Alex Rose Unity最近宣布推出额外的2D游戏支持,添加了Box 2D物理和一个精灵管理器. 但这里还是有些技巧需要牢记在心.逐帧更改图像只是动画制作的冰山一角,若要让你的游戏出色运行 ...
- putty 链接亚马逊服务器
使用 PuTTY 从 Windows 连接到亚马逊云的 Linux 实例 转载 2016年07月22日 14:09:47 使用 PuTTY 从 Windows 连接到亚马逊云的 Linux 实例 ...
- hadoop2.7.7 测试安装 centos7
useradd –m hadoop –s /bin/bash passwd hadoop 增加sudo权限 chmod u+w /etc/sudoers vi /etc/sudoers root ...